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Review
Complement Evasion Contributes to Lyme
Borreliae–Host Associations
Yi-Pin Lin,1,2,* Maria A. Diuk-Wasser,3 Brian Stevenson,4,5 and Peter Kraiczy6,*
Highlights
Emerging and re-emerging zoonotic dis-
eases have a major impact on global
public health, including tick-transmitted
illnesses such as Lyme disease. Lyme
disease-causing pathogens develop a
range of sophisticated strategies to over-
come the innate immune system of vari-
ous vertebrate hosts to accomplish their
–enzootic cycle.

Inactivation of the host´s complement in
the tick's blood meal, and in the host's
bloodstream, are crucial steps to prevent
the spirochetes from being killed during
Lyme disease is the most common vector-borne disease in the northern hemi-
sphere and is causedby spirochetes of theBorrelia burgdorferi sensu lato complex.
Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent
manifestations in these animals; however, Lyme borreliae strains differ in their res-
ervoir hosts. The mechanisms that drive those differences are unknown. To survive
in vertebrate hosts, Lyme borreliae require the ability to escape from host defense
mechanisms, in particular complement. To facilitate the evasion of comple-
ment, Lyme borreliae produce diverse proteins at different stages of
infection, allowing them to persistently survive without being recognized by
hosts and potentially resulting in host-specific infection. This review discusses
the current knowledge regarding the ecology and evolutionary mechanisms of
Lyme borreliae–host associations driven by complement evasion.
their transmission and dissemination.

Strain-to-strain variation in the spiro-
chetes' ability to evade complement
may contribute to variation in the
range of Lyme borreliae–host
associations.
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Lyme Borreliae and Complement
Lyme disease (LD), or borreliosis, is caused by spirochetes of theBorrelia burgdorferi sensu lato (s.l.)
complex (Note that bacteria of the genus Borrelia also cause other diseases, e.g., relapsing fever;
here we use the term 'Lyme borreliae' to represent the causative agent of LD) [1]. Lyme borreliae
are transmitted from vertebrate reservoir hosts (see Glossary) to humans via hard ticks of the
genus Ixodes [2]. More than 20 different genospecies of the complex have been identified so far
of which six species are confirmed to cause human LD: B. burgdorferi sensu stricto (s.s.), B. afzelii,
B. garinii, B. spielmanii, B. bavariensis (formerly referred to as B. garinii OspA serotype 4), and
B. mayonii [2]. Within a genospecies, the isolates of Lyme borreliae may differ in their genetic con-
tents and have been genotyped using different methodologies [3–6]. These isolates often vary in
their associations with particular host species [7,8].

One common feature to B. burgdorferi s.l. species is their ability to counteract the innate immune
defense mechanisms of diverse hosts. Some mammalian and avian reservoir hosts can be per-
sistently infected by certain species for prolonged periodswithout suffering from diseasemanifes-
tations. In contrast, the immune system of humans and other animals that are non-reservoir
hosts can develop disease manifestations, including arthritis, carditis, neurological symptoms
(known as neuroborreliosis), and acrodermatitis chronica atrophicans [2,9]. Strains of
B. burgdorferi s.l. differ in their ability to be maintained in these hosts, and to cause disease man-
ifestations, but the mechanisms that drive such differences remain unclear.

Complement, as an important pillar of innate immunity, forms a powerful surveillance system that
comprises a well-organized network of fluid-phase and membrane-bound regulatory proteins
circulating in the blood. Upon recognition of invading microorganisms, complement is immedi-
ately activated in a cascade-like manner. Despite the effectiveness of complement, Lyme
borreliae develop strategies to circumvent this crucial, nonspecific barrier of their hosts [10]. How-
ever, the heterogeneity in the ability of Lyme borreliae genospecies to survive in sera from different
hosts leads to the hypothesis that Lyme borreliae have complement-inhibitory strategies that do
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Glossary
Host generalist: able to infect a wide
range of hosts.
Host infectivity: the efficiency with
which infection is transmitted from a tick
host population to feeding ticks.
Host specialism/specialization (in
contrast to host generalism): an
ecological and evolutionary process in
which a pathogen becomes differentially
adapted and thus restricts its host range
to a subset of potential hosts. The fitness
variation of B. burgdorferi s.l. strains in
vertebrate host species is generally cited
as evidence of host specialization.
Lyme borreliae speciation: the
evolution of a new species of Lyme
borreliae.
Lyme borreliae–host association:
hosts from which specified Lyme
borreliae species/strains have been
isolated. These associations represent a
pattern (compare with host
specialization) that may be due to
multiple processes, including differential
susceptibility or resistance to serum
complement (the topic of this paper) as
well as other mechanisms.
Non-reservoir hosts: hosts that may
have contact with infected ticks andmay
or may not develop a long-lasting
infection but are incapable of
transmitting the infection to ticks.
Opsonophagocytosis: identification of
an invading microorganism by opsonins
followed by phagocytosis.
Reservoir hosts: natural hosts that the
vector (e.g., tick) becomes infected by
when feeding on such hosts
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not necessarily protect them from the killing action of serum in every host species [11].
Additionally, the ability to evade complement appears to determine the host infectivity of
these pathogens [10,12,13]. This review thus focuses on the current knowledge of the molecular
mechanisms used by Lyme borreliae to counteract complement and the potential role of
complement evasion in the evolution of host specialization in these bacteria.

Diversity in Complement Evasion of Lyme borreliae
Complement is a powerful component of vertebrates’ immune defense against invadingmicroor-
ganisms. A Lyme borreliae strain’s ability to evade complement has been determined by testing
whether a particular strain is able to survive in host sera (also described as serum resistance).
Strains of B. burgdorferi s.l. vary in their ability to inhibit complement from humans and various
animals (Table 1) [14–16]. A strain’s ability to avoid complement-mediated killing by a particular
host’s serum is strongly correlated with the capability of that strain to survive in that host. For
example, the avian-associated species B. garinii and B. valaisiana are generally able to survive
in avian but not mammalian sera, while the mammal-associated species B. afzelii, B. bavariensis,
B. spielmanii, B. bissettiae, and B. japonica can generally survive in mammalian but not avian sera
(reviewed in [13]; Table 1). Additionally, B. burgdorferi, B. afzelii, B. spielmanii, B. bavariensis, and
B. mayonii, which have been isolated from humans, are capable of surviving in human sera. Note
that the pathogenicity of B. valaisiana and B. lusitaniae for humans remains unclear, but these
strains are killed by human serum (reviewed in [17]; Table 1). A notable exception is B. garinii,
which has been isolated from humanswith neurological manifestations, yet someB. garinii strains
are highly vulnerable to killing by human sera. Although several proteins derived from tick saliva
were shown to contribute to the resistance of B. burgdorferi s.l. to complement attack [18], the
correlation of host-specific serum resistance with the infectivity pattern among strains of
B. burgdorferi s.l. supports the notion that bacterial factor(s) determine host association.

The Factors of Lyme Borreliae Involved in Complement Evasion
Complement can be activated through three canonical routes: the classical pathway (CP), the lectin
pathway (LP), and the alternative pathway (AP) (Figure 1) [19]. The binding of antibody to antigen
and the C1 protein complex activates CP, whereas the association of mannan-binding lectin,
ficolins, or collectins with carbohydrates on a pathogen’s surface induces activation of the LP.
Formation of the C3 convertase in the fluid phase, C3bBb, and subsequent cleavage of C3 to
C3a and C3b triggers the activation of the AP and leads to the deposition of C3b on the microbal
or other target surface (Figure 1). Activation of each of these pathways results in the formation of
two different types of C3 convertase: C3bBb formed by the AP, and C4b2a generated by the
CP and LP (Figure 1). Both C3 convertases then promote formation of the central complement
component, C3b, which leads to the formation of the C5 convertase(s) to cleave C5 into C5a
and C5b. C5b deposition on bacterial surfaces initiates the terminal sequence (TS), which recruits
the late complement proteins C6, C7, and C8. The association of C5b, C6, C7, and C8 leads to the
deposition of C9, which is multimerized to form the bacteriolytic terminal complement complex
[TCC; also known as the membrane attack complex, (MAC)]. To protect self surfaces from exces-
sive activation, complement is tightly controlled by a number of soluble and membrane-anchored
regulators. These regulators include, but are not limited to, C1 esterase inhibitor (C1-INH) and C4b-
binding protein (C4BP) that inhibit CP and LP, Factor H (FH) and Factor H-like protein 1 (FHL-1) that
inhibit AP, and vitronectin that negatively modulates the formation of the MAC (Figure 1) [19].

Lyme borreliae possess a number of structurally diverse outer-surface proteins to inactivate
complement at different stages of the infection cycle. These proteins target complement
proteins/regulators that can modulate different arms of complement (reviewed in [13,17]). The
proteins that inhibit AP include the collectively termed FH/FHL-1-binding complement-
Trends in Parasitology, July 2020, Vol. 36, No. 7 635



Table 1. Serum Susceptibility Pattern of Borrelia burgdorferi s.l. to Human and Diverse Animal Seraa

Speciesb B. burgdorferi s.s. B. afzelii B. bavariensis B. japonica B. bissettiae B. andersonii B. gariniic B. valaisiana B. lusitaniae

Human R R R R I S S S S

Mouse R R R R R ND S S ND

Rat S R R ND ND ND S ND ND

Hamster R R R R ND ND S S S

Squirrel R R R R ND ND S S ND

Rabbit I S ND ND I ND S ND ND

Cat I R R R ND ND I R ND

Lynx I I R S R I I R S

Dog I R R I R R S/I I S

Wolf I S R S R I S/I S S

Mouflon I R R R R I R/I R R

Pheasant I S S S ND ND R R S

Blackbird I S S S ND ND R R S

Sheep I S S R S/R I S S R

Horse I S S S ND ND S S S

Pig I S S S ND ND S S S

Goat S S ND ND ND ND S ND ND

Bovine S S S S S S S S S

Deer S S S S S S S S S

Eur. Bisond S S S S S S S S S

Lizard S S S S S ND R R R

Quail R ND ND ND S ND ND ND ND

aData shown were derived from [13]; R, serum-resistant; I, intermediate serum-resistant; S, serum-sensitive, ND, no data available.
bB. burgdorferi s.s., B. afzelii, B. bavariensis, B. japonica, B. bissettiae, and B. andersonii are (mainly) rodent-associated species; B. garinii and B. valaisiana are bird-as-
sociated species; and B. lusitaniae is a reptile-associated species.
cVariations in the serum susceptibility pattern have been reported for the heterogeneous genospecies B. garinii [14]. Of note, B. gariniiOspA serotype 4 was thereafter
referred to as B. bavariensis as it was known to display a resistant phenotype to human serum. B. mayonii and B. spielmanii have not been included due to the lack of
available data but both species resist complement-mediated killing by human serum [98,99].
dEur., European.
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acquiring surface proteins (CRASPs): CspA, CspZ, and OspE-related proteins (members of a
family of proteins collectively known as 'Erp', which include ErpA, ErpC, and ErpP) [20–26]
(Table 2). The recruitment of FH and/or FHL-1 by these proteins onto the bacterial surface
leads to inactivation of the AP, permitting Lyme borreliae to survive in host sera. Additionally,
strains of B. burgdorferi s.l. produce at least two additional outer-surface proteins to inhibit com-
plement: BBK32 and OspC (Table 2) [27,28]. BBK32 binds to C1r and thereby inhibits the acti-
vation of the C1 complex, resulting in the termination of all downstream activation steps of the
CP. OspC of B. burgdorferi s.l. binds to C4b to prevent the formation of C4b2a, the C3
convertase of CP and LP, and thus inhibits activation of those pathways [27,28]. Of note, forma-
tion of theMAC can be downregulated by several Lyme borreliae proteins [29,30] (Table 2) but the
role of TS inhibition in contributing to Lyme borreliae infectivity is as yet unclear.

Multiple Regulatory Mechanisms Control Expression of Complement-inhibitory
Proteins
Lyme borreliae proteins that mediate resistance to host complement exhibit different patterns of
expression during infection, indicative of several distinct regulatory pathways for the production of
636 Trends in Parasitology, July 2020, Vol. 36, No. 7
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Figure 1. Schematic Diagram of Vertebrate Complement Cascades and the Particular Steps at Which Lyme
Borreliae Anti-Complement Proteins Interact. The CspA, CspZ, and OspE-related proteins of Borrelia burgdorferi s.
l. target the host complement regulator factor H (FH) by inhibiting the formation of C3bBb in order to inactivate AP. Lyme
disease spirochetes also produce BBK32 and OspC that bind to C1r and C4b, respectively. These proteins inhibit CP
(for BBK32 and OspC) and LP (for OspC). Additional proteins of B. burgdorferi s.l. (e.g., CspA, BGA66, and BGA71)
inactivate the terminal complement complex (TCC) by preventing the formation of C5b–9 on the surface of spirochetes
(part of the figure is adapted from [13]). AP, alternative pathway; CP, classical pathway; LP, lectin pathway; TS,
terminal sequence.

Trends in Parasitology
these proteins. Lyme borreliae within unfed ticks do not produce OspC, OspE-related proteins,
CspA, or CspZ [31–34] (Table 2). When an infected tick begins to feed on the blood of a
vertebrate host, the production of OspC is induced, so that transmitted bacteria possess this
protein on their outer surface [31]. However, OspC production is repressed within a few days
after establishment of infection [35] (Table 2). In contrast, OspE-related proteins are also induced
during tick feeding, but these outer-surface proteins continue to be produced throughout
vertebrate infection, and bacteria acquired by ticks from infected mammals produce all of their
OspE-related proteins [32,36] (Table 2). Production of CspA is also induced during tick feeding,
Trends in Parasitology, July 2020, Vol. 36, No. 7 637
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Table 2. Characteristics of Complement-Inhibitory Proteins of Lyme Borreliaea

BBK32 OspC CspA CspZ OspE paralogs BGA66 BGA71 p43

ErpPb ErpCb ErpAb

Synonyms and other
designations

None None CRASP-1
BBA68

CRASP-2
BBH06

CRASP-3
BBN38

CRASP-4 CRASP-5
ErpI
ErpN
BBP38
BBL39
OspE

None None None

Gene name bbk32 ospC cspA cspZ erpP erpC erpA bga66 bga71 ND

Origin Bb Bb Bb, Ba, Bs, Bm Bb Bb Bb Bb Bba Bba Bb

Confers serum resistance Yes Yes Yes Yes Unclearc Unclearc Unclearc Yes Yes ND

Interaction with complement
regulators/ components

C1r C2 FH
FHL-1
C7, C8, C9,
TCC

FH
FHL-1

FHR-1
FHR-2
FHR-5

FHR-1
FHR-2

FHR-1
FHR-2
FHR-5

C7, C8,
C9,
TCC

C7, C8,
C9,
TCC

C4BP

Affected complement
pathways

CP CP AP, TS AP ND ND ND TS TS CP/LP
(?)

Fed larvae – – + + (LE) + (HE) + (HE) + (HE) ND ND ND

Unfed nymphs – – + (HE) – – – – ND ND ND

Fed nymphs + + + (LE) + (LE) + + + ND ND ND

Tick biting sites + + + + (HE) + (HE) + (HE) + (HE) ND ND ND

Distal sites + – – + (HE) + (HE) + (HE) + (HE) ND ND ND

+ + (LE) + (HE) + (HE) + (HE) ND ND ND

aCRASP, complement-regulator-acquiring surface protein; Erp, OspE/F-like protein; FH, Factor H; FHL, Factor H-like protein, FHR, FH-related protein; TCC, terminal
complement complex; Bb, B. burgdorferi s.s.; Bba, B. bavariensis; Ba, B. afzelii; Bs, B. spielmanii; Bm, B. mayonii; AP, alternative pathway; CP, classical pathway;
LP, lectin pathway; TS, terminal sequence; ND, no data available; HE, high expression; LE, low expression.
bBinding of Factor H (FH) has been confirmed only for recombinant proteins.
cConfers serum resistance only when ErpP and ErpA are expressed under flaB promoter in a cspA-deficient strain of B. burgdorferi in the infectious background.

Trends in Parasitology
but is repressed subsequently after the transmission begins, and the infection establishes at the
tick-biting site of the skin. The cspA expression is then induced when Lyme borreliae are
transmitted from infected vertebrates to feeding ticks [33,34] (Table 2). CspZ exhibits yet another
pattern of expression: its production begins after transmission of bacteria from the tick into the
vertebrate, persists throughout vertebrate infection, and is then repressed during acquisition by
feeding ticks [33,34] (Table 2).

Of the Lyme borreliae complement-resistance mediators, the regulatory networks of OspC
and the OspE-related proteins are the most well studied. High-level expression of OspC is
dependent upon an alternative sigma factor (RpoS), which has led to a hypothesis that RpoS
directly controls ospC transcription [37]. However, ospC is transcribed at low levels in rpoS-
deficient mutants, leading to an alternative hypothesis that the effect of RpoS is indirect
[38,39]. Consistent with that second model, a region of DNA 5′ of the ospC promoter is
required for RpoS-dependent induction of ospC, and is likely to be a binding site for a regula-
tory protein that is under control of RpoS [40,41]. Additionally, bbk32 is also regulated by such
an RpoS-dependent mechanism in a fashion similar to that of ospC [42,43]. While the operon
of ospE is controlled in an RpoS-independent manner [38], this operon contains a highly
conserved operator region, and is under the transcriptional regulation of three proteins that
bind to erp operator DNA: the BpaB repressor, the BpuR corepressor, and the EbfC
antirepressor [44–48]. Studies of BpuR and EbfC indicated that each protein regulates its
own production, and that production of both proteins is also controlled by the DnaA protein
638 Trends in Parasitology, July 2020, Vol. 36, No. 7



Trends in Parasitology
(the master regulator of bacterial replication) [49–51]. In addition, our preliminary studies of
CspZ found that a novel Lyme borreliae protein binds near the cspZ transcriptional promoter,
which warrants further investigation.

Polymorphisms of Complement-Inhibitory Proteins Influence Lyme Borreliae–
Host Association
CspA, a Complement-Evasion Factor Operating in Ticks
The transcript encoding CspA is expressed by B. burgdorferi s.s. at the onset of tick feeding and
during transmission to vertebrate hosts, and is then repressed in the later stages of infection [34]
(Table 2). The tick-specific expression profile of cspA is consistent with the previous finding that
Lyme borreliae require CspA to survive in the tick's midgut upon blood feeding [52]. A recent
observation indicates that CspA-mediated FH-binding activity is essential for these pathogens to
evade complement in the ingested blood, permitting efficient tick-to-host transmission [52] (Figure
2, Key Figure). The CspA polymorphisms are associated with variable FH-binding activity [52,53],
resulting in the strains that are either highly vulnerable (in the absence of FH) or highly resistant
(upon binding of FH) to complement of vertebrate hosts [52,53]. These findings suggest that
CspA is one of the determinants that define host-specific infection. However, whether particular
CspA variants that promote inefficient tick-borne transmission tomice have a role in facilitating trans-
mission to other animals remains unknown. The evolutionary mechanisms and amino acid determi-
nants of this protein which drive such host associations need further investigation.

CspZ, a Complement-Evasion Factor Operating in the Vertebrate Host
In contrast to cspA, expression of cspZ occurs only in the vertebrate host [34] (Table 2). Blood-
treated Lyme borreliae that lack cspZ or produce a mutant CspZ without FH-binding activity
exhibit reduced colonization of distal tissues during mouse infection. Those results indicate
that CspZ-mediated FH-binding activity contributes to spirochete dissemination [54,55]
(Figure 2). Unlike CspA, the amino acid sequences of CspZ are largely conserved among differ-
ent B. burgdorferi s.s. strains (N95% identity) and species of the B. burgdorferi s.l. complex
(N70% identity) [56,57]. However, allelically different human FH-binding activity was observed in
CspZ from different B. burgdorferi s.s. strains [56,57]. Comparisons of the solved structure of
CspZ ofB. burgdorferiB31with differentB. burgdorferi s.s. strains showed variations in the regions
that are involved with FH-binding activity [58]. These results raise an intriguing question: would
such a host-specific FH-binding activity of CspZ enable this protein to be one of the determinants
that drive host association? Additionally, CspZ is not carried by everyB. burgdorferi s.s. strain, sug-
gesting that additional genes encoding complement-inhibitory proteins are coexpressed with cspZ
[56,59] (Table 2).

OspE-Related Proteins – Additional Complement-Evasion Factors Operating in the Vertebrate
Host?
Strains of B. burgdorferi s.l. produce multiple OspE-related proteins [60–62]. Consistent with
the expression of ospE triggered by host-specific environmental cues (e.g., a blood meal), a
previous study reported that passive transfer of anti-OspE IgG reduces the levels of spiro-
chete transmission to mice [63]. A B. burgdorferi s.s. strain with a transposon inserted into
erpA (one ospE paralog in B. burgdorferi s.s. strain B31-A3) displays a 2-week delay in the
distal tissue colonization when coinfected with a population of mutant Lyme borreliae strains
with transposons inserted into different genes [64]. These findings suggest that OspE-related
proteins promotes the spirochetes’ tick-to-host transmission and hematogenous dissemina-
tion (Figure 2). The ospE genes largely differ in the number of copies and sequences among
different species or strains of B. burgdorferi s.l., raising the possibility that OspE-related pro-
teins determines host specificity of infection [65,66].
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Key Figure

Complement-Inhibitory Proteins and Their Potential Roles in the Infection
Route

CspA 
Facilitating evasion to 
complement in the tick 
midgut during feeding

OspC 
Binding to Salp15 to prevent
deposition of complement 
components at tick bite sites

BBK32, CspZ, OspC
Facilitating complement evasion 
and survival in bloodstream 
during dissemination

OspE
Functionally unclear 
but appearing to confer 
dissemination

Complement 
complex

Neutrophils
Macrophage
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Figure 2. When ticks feed on hosts, Lyme borreliae produce CspA to facilitate spirochete escape from complement-
mediated killing in the blood meal. After transmission to a host, the tick salivary protein, Salp15, binds to OspC on the
spirochete surface to prevent opsonophagocytosis at tick-bite sites. Additionally, Lyme borreliae produce OspC, BBK32,
and CspZ to promote complement evasion and bloodstream survival of spirochetes. The cell types and complement
complex are indicated on the figure. Though the function of OspE-related proteins during infection remains unclear,
current evidence supports the notion that this protein may confer spirochete dissemination in vertebrate animals. (Part of
the figure is adapted from [26].)
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OspC and BBK32, Complement-Evasion Factors Operating in the Initial Phase of Infection
OspC is one of the most studied outer-surface lipoproteins in B. burgdorferi s.l. This protein is not
expressedwhen Lyme borreliae are in ticks prior to blood feeding but is produced upon the blood
feeding of ticks and during transmission. After entry into hosts, the production of OspC remains
until Lyme borreliae begin disseminating to distal tissues (Table 2). OspC binds to a tick salivary
protein, Salp15, and the decoration of this tick protein on the surface of Lyme borreliae prevents
opsonophagocytosis at the tick-biting site [67]. OspC also binds to human complement C4b to
inactivate CP and LP. Consistent with these activities, OspC is required for Lyme borreliae to
survive at infection-initiation sites during the first 24 h of pathogen inoculation, and it gives spiro-
chetes the ability to persist in the mammalian bloodstream [27,68] (Figure 2). Nonetheless, the
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molecular mechanisms leading to such phenotypes need further investigation. Furthermore,
OspC is one of the most polymorphic proteins among different strains or species of
B. burgdorferi s.l. [1]. However, whether this protein is a determinant of host-specific survival,
and, if so, which mechanisms drive such survival, is still unclear.

BBK32 was initially identified as an adhesin that binds to the extracellular matrix molecules
fibronectin and glycosaminoglycans on the host cell surface and was later demonstrated to be
a C1r-binding protein that inactivates CP [28]. In agreement with a blood-meal-induced
expression profile of bbk32 (Table 2), BBK32 contributes to the ability to survive in the mouse
bloodstream for a short time and disseminate to joints at early stages of infection [68,69]
(Figure 2). Though BBK32 is conserved (close to 90% similarity among strains or species of
B. burgdorferi s.l.), the orthologs from B. afzelii and B. garinii differ in their capability to bind to
human C1r [70]. Assuming that C1r-binding activity plays a role in conferring spirochete survival
in the vertebrate bloodstream, and promotes dissemination at infection onset, such a strain-to-
strain variation in BBK32-mediated C1r-binding activity may support the notion that this protein
drives host-specific infectivity.

Host Specialism of LD Spirochetes at a Glance
The spirochetes of the B. burgdorferi s.l. complex are maintained in an enzootic cycle between
ticks of the Ixodes ricinus complex and reservoir hosts, including small and medium-sized mam-
mals, birds, and reptiles [9]. In most Lyme disease-endemic regions, there is a diverse community
of cocirculating Lyme borreliae, and an association between different classes of vertebrate hosts
and some B. burgdorferi s.l. genospecies has been observed [9,71,72]. Some of these observed
associations may be due to extrinsic factors such as geographic co-occurrence of hosts with
specific B. burgdorferi s.l. genospecies. However, there is strong evidence that at least some
of these genospecies differ intrinsically in transmissibility across hosts, that is, they are 'host
specialized' [11,12,71]. The strongest evidence is provided by experiments demonstrating
increased fitness for B. afzelii in mice and B. garinii in birds [11,12,72] and, to some extent, field
studies demonstrating greater genospecies infection prevalence in certain hosts compared to
the background infection prevalence in local populations of Ixodes spp vectors [73].

In contrast to the other genospecies in the B. burgdorferi s.l. complex, B. burgdorferi s.s. is
considered to be a host generalist as it has been isolated from multiple classes of vertebrate
animals (e.g., mammalian and avian hosts) [71] and is summarized in [9]. However, multiple
studies indicate that some genotypes of B. burgdorferi s.s. have a higher fitness in some
hosts in laboratory studies [74] and are more prevalent in certain mammalian or avian host
species [9,75–81]. Evidence of within-genospecies association of specific genotypes of
B. burgdorferi s.l. and certain hosts has also been described for B. garinii and B. afzelii in
laboratory experiments [9,72,82] and in some field studies [83,84] but not in others [85]. A
limitation of field studies is that they represent only snapshots of population structures that
are spatially and temporally variable due to stochastic effects or other forces, making
inferences of host association difficult [71].

Ecoevolutionary Mechanisms Driving B. burgdorferi–Host Specialism
Despite evidence for some level of association between B. burgdorferi s.s. strains and hosts
from laboratory infections and field studies [5,86], the extent to which host adaptation drives
the genome-wide diversification in B. burgdorferi s.l. is currently under debate. Particular atten-
tion has focused on factors driving polymorphism in OspC, one of the most diverse Lyme
borreliae antigens that is heavily targeted by the vertebrate immune system [87–89]. Balancing
selection has been proposed to maintain ospC alleles at intermediate frequencies, with high
Trends in Parasitology, July 2020, Vol. 36, No. 7 641
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sequence diversity within a population [90]. Genome-wide linkage to this single locus may
then be responsible for maintaining genetic variation at linked loci [91–93]. It is currently
debated which specific mode of balancing selection drives the OspC polymorphism in
B. burgdorferi s.s. Some authors have proposed that, similar to the process operating across
B. burgdorferi s.l. species, host specialization via multiple-niche polymorphism (with hosts
acting as different ‘niches’ for B. burgdorferi s.s.) could lead to diversification within
B. burgdorferi s.s. [71,79,80,94].

Alternatively, the OspC polymorphism could be maintained by negative frequency-dependent
selectionmediated by adaptive immunity, such that bacterial populations carrying rare genotypes
have a selective advantage over common genotypes and are thus maintained in the population
[90,94,95]. Theoretical studies predict that frequency-dependent fitness leads to fluctuations in
the abundance of spirochete genotypes, which would result in temporal shifts in the population
structures; however, evidence for these fluctuations is limited [96,97].

An intriguing question is whether the partial and regionally constrained host associations
observed in B. burgdorferi s.s. represent an incipient evolutionary process of host specialization
(Figure 3). That is, is B. burgdorferi s.s. on an evolutionary path to diversify into species-
associated ecotypes similar to the B. burgdorferi s.l. genospecies in Europe? B. burgdorferi
s.s. generalism, that is, the ability to infect multiple hosts, has in fact been proposed as a key
property allowing it to spread across the northeastern USA following large-scale habitat destruc-
tion in the course of the post-Columbian settlement and during the industrial revolution [80]. The
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B. turdi

B. burgdorferi
B. afzelii
B. bavariensis
B. mayonii
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B. japonica
B. kurtenbachii
B. spielmanii
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Figure 3. The Host–Pathogen Association for Borrelia burgdorferi s.l. Genospecies. The indicated Borrelia
burgdorferi s.l. genospecies are acquired and transmitted between ticks and different vertebrate hosts, including humans
small mammals, reptiles, and songbirds. (Part of the figure is adapted from [9].)
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Outstanding Questions
Does the species-specific polymor-
phism of complement- or complement-
regulator-binding activity play a key role
in driving the host association of
B. burgdorferi s.l.?

Why would B. burgdorferi s.l.
produce multiple proteins displaying
redundant complement-inhibitory ac-
tivity (e.g., CspZ, OspE, BBK32, and
OspC) when they are in the vertebrate
hosts? Would they all contribute to
the Lyme borreliae–host association?

Within the same taxonomic
classifications (e.g., birds or mam-
mals), would there be a difference in
complement evasion for different spe-
cies/strains of the B. burgdorferi s.l.
complex leading to different levels of
Lyme borreliae–host association?

Does the partial and regionally
constrained host-specific infectivity
observed in B. burgdorferi s.s. repre-
sent an incipient evolutionary process
toward a more complete Lyme
borreliae–host association?
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more recent geographic expansion of B. burgdorferi s.s may provide additional opportunities
for adaptation to different host niches, resulting in the development of species-associated
ecotypes similar to the B. burgdorferi s.l. genospecies in Europe [84]. The recent redefinition of
B. bavariensis from a genotype of B. garinii to a novel genospecies (after it was shown to infect
mice in contrast to B. garinii, a bird-adapted genospecies) provides a glimpse of potential future
processes of host specialization and Lyme borreliae speciation by B. burgdorferi s.l. linked to
vector or host association [84].

Concluding Remarks
Here we summarize evidence supporting the contribution of proteins to host-specific comple-
ment evasion-mediated infection phenotypes. Does the complement-evasion activity of
B. burgdorferi s.l. confer its host-association phenotype (see Outstanding questions)? The fact
that some of these proteins are functionally redundant, and are produced simultaneously in
the infection cycle, raises the hypothesis that they act in concert to promote the host association
of B. burgdorferi s.l. (see Outstanding Questions). Furthermore, the ability of complement to
eliminate Lyme borreliae appears to differ among diverse animal species in the same taxonomic
classification (e.g., birds or mammals). This leads to an intriguing question: does complement
play a role in defining the different levels of competence for the hosts within the same taxonomic
classification (see Outstanding Questions)? In addition, though a spirochete–host association has
been clearly defined for different Lyme borreliae genospecies, whether this association also ap-
plies to different genotypes of spirochetes within the same genospecies (e.g., B. burgdorferi s.
s.) is unclear. Teasing apart this question could elucidate an incipient evolutionary process of
B. burgdorferi s.l. toward host specialization (see Outstanding Questions). Future investigations
of the aforementioned questions will undoubtedly contribute to insight about the factors contrib-
uting to the pathobiology of spirochetes and their diversity in host associations.
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