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AeDeS: a next‑generation 
monitoring and forecasting 
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suitability of Aedes‑borne disease 
transmission
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Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million 
infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly 
due to city population growth, more frequent travels and ecological changes. in the United States 
of America, the vast majority of Aedes‑borne infections are imported from endemic regions by 
travelers, who can become new sources of mosquito infection upon their return home if the exposed 
population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes 
and the virus are present. Since the susceptibility of the human population can be determined 
via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes 
and viruses becomes one of the most important pieces of information for decision makers in the 
health sector. We present a next‑generation monitoring and forecasting system for Aedes‑borne 
diseases’ environmental suitability (AeDeS) of transmission in the conterminous United States 
and transboundary regions, using calibrated ento‑epidemiological models, climate models and 
temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider 
the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak 
happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic 
and probabilistic forecasts can inform key prevention and control strategies .

Human society is more and more interconnected every year by communication technologies, travel and supply 
chains. As a consequence, increasing movement of humans, animals, pathogens, vectors, goods, and capital 
across borders creates both risks and  opportunities1. Like climate, epidemics do not mind political borders, and 
can impact social stability and human health. In the last couple of decades, the appearance of a variety of new 
epidemics, such as the SARS coronavirus in 2003, the avian influenza (H1N1) in 2009, the Ebola virus in west-
ern Africa (2014–2016), the Zika virus in the Americas (2015–2016), and the novel coronavirus (SARS-CoV-2) 
identified in late December 2019 in Wuhan (China) and still ongoing, amongst others, demonstrates how fast 
emerging infectious diseases can spread, sometimes causing damage at national or regional scale, and other 
times—like the present SARS-CoV-2 pandemic—impacting the entire  world2.

Multiple infectious diseases are climate-sensitive, with climate acting as a key driver of spatio-temporal 
patterns of infections, related to seasonal, year-to-year, and longer-term shifts in populations at  risk3. Climate 
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impacts both pathogens and vectors. Arboviruses of global public health importance, including Zika, dengue, 
yellow fever, chikungunya, and Rift Valley Fever, have mosquitoes as part of their epidemiological cycles.

Some Aedes-borne diseases have experienced an overall increase of 30-fold in the last 50 years, causing more 
than 50 million infections worldwide every  year4. In the United States of America, the vast majority of Aedes-
borne infections are imported from endemic and often neighboring regions—like the Caribbean, Central and 
South America—by travelers who become potential new sources of transmission. Autochthonous transmission 
in the continental USA has been already observed for chikungunya virus (2013) and Zika (2017), and risks are 
likely to increase with anthropogenic global warming as temperatures become more suitable for transmission 
in temperate regions.

For autochthonous transmission to occur, the population needs to be susceptible to the disease, but there 
must also be suitable environmental conditions (e.g., suitable temperatures) for both the mosquitoes and the 
virus. Environmental suitability for presence of mosquitoes and virus transmission is one of the most important 
pieces of information for decision makers in the health sector. Moreover, the transmission rates or the number of 
cases are generally more difficult to forecast than environmental suitability, due to their link to a larger number 
of (often entangled and more complex) predictors, involving human behavior and socio-economic conditions.

A generalized approach to modeling Aedes-borne pathogens is needed because multiple Aedes species can 
serve as vectors of dengue, Zika, and chikungunya. Although Aedes aegypti is the most common vector, Aedes 
albopictus (otherwise known as the Asian tiger mosquito) has been identified as another important vector because 
of its vector competence for several arboviruses and recent rapid  spread5. Both vectors pose a potent threat to 
global health security given their ability to transmit a wide variety of emerging and re-emerging arboviruses for 
which there are no vaccines. Aedes aegypti and Aedes albopictus are ubiquitous in large regions of the Americas 
and the Caribbean.

Historical, current, and forecast climate information can be combined with disease models to improve cli-
mate-sensitive health planning and targeting of resources. A typical approach for infectious disease modelling has 
been to explore different interventions scenarios in order to inform priorities for decision  makers6. Nonetheless, 
there is increasing interest in using models for real-time forecasting and climate-and-health  services7–9, with still 
important gaps in the operational readiness of several forecasting systems proposed in the  literature10. Stochastic 
models are frequently used in climate and disease modeling to build probabilistic  forecasts11, as they provide a 
more reliable assessment of the range of likely outcomes. However, probabilistic models are sometimes harder 
for decision makers to interpret, and tend to be rejected in favour of simpler, deterministic, but over-confident, 
models. An approach that takes full advantage of both deterministic and probabilistic forecasts is presented and 
discussed in the following pages.

Although the historical (average) seasonal behavior and similar statistics of these diseases are  useful12, we con-
sider it not enough for decision-making, as inter-annual variability (e.g., related to El Niño-Southern Oscillation) 
tends to play an important role in the actual observed variations of Aedes-borne diseases, enhancing or reducing 
the associated  risk8,13–16. Hence, a formal forecast system and its associated skill assessment is required and, to 
the best of our knowledge, is still nonexistent for the continental United States and its transboundary regions.

Here, we describe the AeDES ( Aedes-borne diseases’ environmental suitability) system, a new pattern-based 
calibrated, multi-model ensemble of climate-driven Aedes-borne disease models for North America, Central 
America, northern South America and the Caribbean, based on prior work undertaken in collaboration with 
the Pan American Health Organization (PAHO)/World Health Organization (WHO)8,16,17. We built the AeDES 
system using the same general approach for both its monitoring and forecasting sub-systems, which in addition 
to supporting surveillance operations, simplifies the forecast verification process. We discuss the use of AeDES 
to inform concrete prevention and control strategies, using the recent Zika epidemic as an example.

Results
AeDES uses multiple ento-epidemiological models to produce estimations of environmental suitability for trans-
mission of Aedes-borne diseases, quantified via the basic reproduction number, R0 (red box in Fig. 1). We used 
the basic reproduction number to assess the environmental suitability of transmission of Aedes-borne diseases 
because (a) it is one of the operational outbreak indices used by WHO and several other decision-making insti-
tutes and health  practitioners18,19, and (b) it has an intuitive interpretation in terms of the number of secondary 
human cases one case generates on average over the course of its infectious period (assuming a completely sus-
ceptible population)20; hence, values smaller than one indicate that environmental conditions are not suitable 
for disease propagation, and the larger the value of R0 , the more suitable the conditions are.

Formally, R0 is an environmental suitability (or potential) index for transmission, and not a proper trans-
mission or risk index itself; the latter depends on more complex interactions and the definition of the involved 
vulnerability, which is in part a function of the susceptibility, exposure and adaptive capacity of the population 
to the pathogen. In addition, the formalism leading to the definition of R0 involves a series of assumptions (e.g., 
constant population size, constant transmission and removal rates, no demography and well-mixed population) 
that makes it just an approximation to the observed behaviour of disease transmission. Thus, as only a measure 
of environmental suitability, R0 is a necessary but not sufficient condition for transmission. Only if additional 
information is available for a particular location about the presence of the vector, the circulation of the virus 
and the vulnerability of the population, can the decision maker interpret R0 values in the AeDES system as a 
proxy for risk of transmission.

R0 works both as a suitability monitoring index—when computed using observed variables, or when esti-
mated by an authoritative organization such as PAHO or the Center for Disease Control (CDC)—and as a forecast 
index when using actual climate forecasts of the variables required for its computation.
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R0 models require a set of ento-epidemiological parameters (green box, in Fig. 1) and environmental infor-
mation, either actual observations if we focus on the monitoring sub-system, or forecasts if we focus on the 
prediction sub-system (see blue box in Fig. 1). Typically, R0 models require near-surface (2-m) temperatures, 
but other environmental variables are also involved, like rainfall or even humidity. Here, we use four R0 models 
already described in the literature, and that ultimately depend only on surface temperature: the Caminade et al.21, 
Wesolowski et al.22, Liu-Helmersson et al.23 and Mordecai et al.24 models. For details see the "Methods"section. 
We use multiple R0 models to be able to better assess uncertainties, and we calibrate each of the models inde-
pendently before creating the multi-model ensemble to minimize systematic errors.

Monitoring sub‑system. The AeDES monitoring sub-system offers maps showing the spatial distribution 
of environmental suitability over the region of study for the 1948-present period, at a monthly timescale. It also 
includes additional information to provide context to the user (Fig. 2). These fields were included in the AeDES 
Maproom (https ://aedes .iri.colum bia.edu) after consultation with decision makers at PAHO.

To produce the environmental suitability maps (e.g., Fig. 2a), each one of the four R0 models was run from 
1948 to present, forced by GHCN-CAMS temperature  data25 ( ∼ 56 km resolution) and ento-epidemiological 
parameters (see “Methods” section), and then combined. The monitoring sub-system is automatically updated 
in the AeDES Maproom around the 8th day of each month. These maps are useful to know the recent behavior 
of environmental suitability, or to conduct comparisons with respect to particular years. Trends and variability 
analysis, or the extension of the northern border of environmental suitability can also be easily computed with 
this new dataset. As discussed earlier, values of R0 > 1 in these maps should not be identified as actual trans-
mission of pathogens in those locations, unless there is confirmed evidence of the presence of the vector and 
circulation of the pathogens, as well as information about the susceptibility and even the lifestyle of the human 
 population15,26. The same applies to the forecast maps described in the next section.

The additional information, such as population density (Fig. 2b) and social vulnerability (Fig. 2c), is offered 
to the user to assess potential risk of transmission and is not part of the models themselves. Once a location is 
selected, the seasonality of R0 , accumulated rainfall, minimum, average and maximum temperatures, and fre-
quency of rainy days (Fig. 2d–g) is provided. Our team is working on adding fields such as human mobility and 
connectivity, which local experts in the northeast of the US have suggested as also useful to analyze potential 
disease  transmission27, consistent with previous  research28–30.

forecast sub‑system calibration and evaluation. As indicated earlier, the forecast sub-system 
employs the output of state-of-the-art climate models and the same R0 models used by the monitoring system. 
Models, nonetheless, require statistical post-processing to help correct for biases with respect to the monitored 
R0 values. Following Muñoz et al.8, a pattern-based Model Output Statistics (MOS) approach using principal 
component regression (PCR) was applied to the raw R0 models output. Since the R0 models are the same (using 
the same ento-epidemiological parameters) the calibration takes care of climate-related model biases only.

To evaluate how good the R0 forecasts are, a skill assessment is conducted. Because direct measurements of R0 
with which to compare model predictions are not available, the predictive skill of the AeDES forecast sub-system 
is assessed comparing its predictions against the output of the monitoring sub-system. Specifically, observed 
climate (temperature) values are used to calculate the “observed” R0 , which is used as benchmark or reference 
in the skill assessment. Climate hindcasts (i.e., retrospective climate forecasts) are used to force the R0 models, 
thus producing the R0 forecasts (see Fig. 1). The cross-validated skill assessment compares the “observed” and 
forecast R0 values, and helps analyze how biases in climate hindcasts carry through to influence R0.

Figure 1.  Monitoring and forecast system schematics. Ento-epidemiological and environmental information 
(obs: climate observations, fcsts: climate forecasts) are used to force four R0 models. Each model is 
independently calibrated using a pattern-based post-processing approach before being combined.

https://aedes.iri.columbia.edu
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The skill assessment was conducted for each calibrated R0 model and the final multi-R0 model ensemble 
(i.e., the AeDES model), focusing on discrimination as an actual measure of the value of a forecast sub-system31. 
Although correlations between forecasts and observation are often used to assess skill, they only provide informa-
tion of how in phase or not the forecasts are with respect to observations. The metric selected for skill assessment 
was the two-alternative forced choice, or 2AFC, which “measures the proportion of all available pairs of obser-
vations of differing category whose probability forecasts are discriminated in the correct direction”31. In other 
words, when terciles (above-normal, normal, below-normal conditions) are used, the 2AFC measures how well 
the system distinguishes between the different categories; a system with poor discrimination is of no practical 
and economical value for decision makers. Furthermore, 2AFC has an intuitive interpretation as an indication 
of how often the forecasts are  correct31.

AeDES’s predictive skill (as measured by 2AFC) is well above that of the reference long-term average (cor-
responding to 2AFC = 50% ), with values ∼1.4–1.8 times larger than that baseline basically everywhere in the 
region under study. Skillful regions extend farther north during the boreal summer (Jun–Aug, or JJA) due to 
more suitable areas for the vectors because of higher seasonal temperatures (see Fig. 3a,c). Also, as expected, 
AeDES exhibits skill improvement compared to any of the models involved in its ensemble (Fig. 3), which 
show comparable skill distributions among themselves, both in space and time. AeDES tends to outperform 
the individual models everywhere, but especially in the Caribbean (e.g., Cuba, Jamaica, Haiti, and Dominican 
Republic) and in a lower degree in the United States Great Plains, southern Mexico, Colombia’s Orinoquía and 
the northern Amazon in Brazil (Fig. 3); it also outperforms its predecessor model for Latin America and the 
Caribbean, described by Muñoz et al.8, especially in summer in western Colombia, and in winter in most of 
Central America and the Yucatan Peninsula (cfr. Fig. 4 in Muñoz et al.8).

Figure 2.  Example of fields available in the AeDES monitor system: (a) basic reproduction number for July 
2019 (only locations with R0 > 1 , suitable for transmission, are plotted); (b) population density (persons per 
square kilometer; estimated for 2020); (c) infant mortality (infant deaths per 10,000 live births); and seasonality 
of (d) R0 , (e) accumulated rainfall, (f) maximum, average and minimum temperature and (g) frequency of 
rainy days for Miami, FL (any other location in the map can be plotted). Only values corresponding to suitable 
conditions for transmission ( R0 > 1 ) are plotted. In the AeDES monitoring sub-system, the user is able to 
evaluate information on population demographics, social vulnerability, and climate in conjunction with the R0 
value to assess potential risk of transmission.
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Predictive skill of the AeDES system is especially high (2AFC ∼70–90%) in most locations of Central America, 
the Caribbean and northern South America in boreal winter (Dec–Feb, or DJF), with “skill hotspots” in both 
boreal summer and winter in Guatemala, Honduras, El Salvador, Cuba, Haiti and Dominican Republic, Jamaica, 
Puerto Rico, and some island nations in the Lesser Antilles (unfortunately the observational dataset used for 
calibration does not cover all of these island nations).

Regarding North America, the Yucatan Peninsula is one of the locations with highest skill, especially in DJF, 
a peak season for tourism, and thus increased human mobility. In summer, almost the entire Pacific coast of 
Mexico exhibits 2AFC values above 65%. Overall, predictive skill over the United States in summer tends to be 
higher in the eastern half of the country than in the western half (where orographic temperatures naturally tends 
to control vector proliferation in large regions), and ranges between 50 and 90% along the United States-Mexico 
border and the states along the Gulf of Mexico’s shoreline. Forecast discrimination skill for southern Florida is 
also high in summer (values ∼ 90%, see Fig. 3c). In northern South America, the Caribbean coast of Colombia, 
and northern regions of Venezuela, Guyana, Suriname, French Guyana, and northeastern Brazil exhibit very 
high skill both in summer and winter.

Hence, predictive discrimination skill of AeDES is in general high, and decision makers geographically inter-
ested in the hotspots mentioned above can take special advantage of the enhanced skill of the system in these 
regions to improve their response times on key prevention and control strategies, at least one month ahead of the 
target season, in locations known to have the vector(s) and the pathogen(s). Conversely, in other places decision 
makers could use the information provided by the AeDES system on suitable environmental conditions to show 
how important it is to prevent the vectors from establishing in new geographical locations.

Discussion
The risk of Aedes-borne disease transmission is in general very difficult to estimate, in part due to the complexi-
ties of accurately assessing the actual risk in terms of hazards and vulnerabilities impacting the target popula-
tion. The general approach should successfully integrate the interactions between humans, virus, vectors, and 
the environment, making it a very complex system to forecast, in particular because many of those interactions 
are not yet well understood. An alternative is to identify a predictand (variable to monitor and predict) that (a) 

Figure 3.  Cross-validated skill assessment (using 2AFC) between the AeDES multi-R0 model system (a,c) 
and the Caminade et al.21 R0 model, for the boreal winter (a,b; DJF: Dec–Feb) and summer (c,d; JJA: Jun–Aug) 
seasons. Values above (below) 50% indicate better (worse) discrimination than long-term averages; only values 
corresponding to suitable conditions for transmission ( R0 > 1 ) are plotted. Skill of the other involved models is 
similar to the Caminade et al.21 one (see Data and Codes Availability).
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enables decision makers to take timely, “no-regrets” actions, (b) is verifiable (can be easily obtained from the 
information available or the health surveillance systems in place), and (c) can be skillfully predicted for the 
region and timescales of interest. The information provided to decision makers does not need to be perfect, but 
it needs to be reliable enough to improve decision-making.

Typical choices of predictands in the case of interest are number of positive cases and incidence. Although 
these options generally satisfy criteria (a) and (b) mentioned above, predictive skill tends to be a barrier to making 
the best decisions in a timely manner. Low predictive capacity for these predictands occurs for different reasons, 
but often can be traced to the fact that they depend on a variety of complex factors (e.g., socio-economic condi-
tions, human behavior, human mobility, etc.), some of which are (still) largely unpredictable. Previous work has 
 argued8 that a potential alternative is to focus on environmental suitability for transmission, since variables like 
temperature, relative humidity, vegetation cover and sometimes rainfall, are skillfully predictable at timescales 
decision makers are interested in. In this sense, climate imparts predictability to the Aedes-borne diseases trans-
mission problem if a predictand like temperature-dependent R0 is used as a proxy for environmental suitability 
(and, under certain conditions, transmission risk), even when clearly it is not representing the complete risk 
picture: additional information, as mentioned earlier, on the presence of the vector(s), the population exposed to 
the disease, and circulation of the virus is also needed. Recent work by Monaghan et al.32 uses a similar approach 
to the one presented here to address the vector presence/absence component of the problem, and certainly both 
systems could be combined to provide additional information for decision makers in the health sector.

AeDeS, uncertainties and decision‑making. A large amount of work in the related scientific literature 
has been focused on developing or improving different R0 models (see Van den  Driessche33 and references 
therein), but few efforts have addressed real-time, objective R0 seasonal forecasts, and no such operational sys-
tem—to the best of our knowledge—existed until now for Aedes spp. in North America, Central America, north-
ern South America and the Caribbean basin. Furthermore, to better assess uncertainty in AeDES, the approach 
followed here involves the use of not one but multiple ento-epidemiological models, forced by state-of-the-art 
seasonal climate models from the National Oceanic and Atmospheric Administration (NOAA) North American 
Multi-Model Ensemble  project34.

There is consensus in the scientific community on the need to include uncertainty information on any fore-
cast that is  produced35. One way of providing that information is to add confidence limits if the forecasts are 
deterministic (calculated values of R0 in our case). To give an example, Fig. 4 illustrates the expected R0 values 
for the summer of 2016 (Fig. 4a), and the expected standard deviation (or uncertainty, Fig. 4b); for reference, 
the monitored (or “observed”) values for the same summer are presented in Fig. 4c).

Another way to provide information about the forecast uncertainty is via the use of probabilities to indicate 
how confident (or not) the system is that a certain outcome—say, above normal R0 values—will occur during the 
next season. An example of a tercile-based R0 probabilistic seasonal prediction, again for the summer of 2016, is 
presented in Fig. 5a, where probabilities of below-normal, normal, or above-normal R0 values correspond to red, 
green, and blue color shades, respectively. Although this is generally very useful information, and tercile-based 
probabilistic forecasts have been used for more than two decades now, decision makers often require information 
beyond the usual three categories described above. Using the entire probability density function (see “Methods” 
section), AeDES also provides probabilities of exceeding particular thresholds of interest (Fig. 5b).

To illustrate the use of both deterministic and probabilistic forecasts, we analyze a hindcast for 2016 (Figs. 4, 5, 
and a real-time forecast for 2020 (Fig. 6). Consider first the recent Zika epidemic in the  Americas36, which in 
the US led to $1.1  billion37 of public spending for emergency response. Official CDC  numbers38 for Zika cases 
in the US indicate that both Miami, FL, and New York City (NYC), NY, reported slightly more than 1,000 cases 
in 2016, around 40% of the total number of cases in the US. Most of these cases were reported after the summer 
of 2016, a period of increased environmental suitability and human mobility (e.g., tourism to the Caribbean). 
We will focus on these two cities in this example.

By the beginning of May 2016, decision makers using AeDES would have expected enhanced suitability 
conditions for Zika during JJA in basically all of the southeastern US states, but also the Caribbean, most 
of Central America and northern South America (Figs. 4a,b, 5a), where several Zika cases had been already 
reported. Although it was highly probable that both Miami and NYC exhibited above-normal suitability condi-
tions (Fig. 5a), only Miami was expected to exceed R0 = 3 (Fig. 5b). In fact, the decision makers could have used 
AeDES to determine that most probably Miami would not exceed R0 = 3.4 (Fig. 5c), while NYC most probably 
would not exceed R0 = 2 (Fig. 4d). These probabilistic forecasts were consistent with the deterministic ones for 
both cities (Fig. 4a,b), and by early September 2016—once the actual summer R0 values were available in the 
monitor sub-system—decision makers would have discovered that the forecasts were actually correct (Fig. 4c). 
But coming back to May 2016, what do those particular R0 forecasts mean? It depends on whether the location 
of interest already has the virus and the vector present, and a susceptible, exposed, and unprepared popula-
tion. If the virus and the vector(s) are not present, the R0 maps just indicate that the environment is suitable 
for transmission, but there is no immediate risk. In some cases, preventive measures can be taken to avoid the 
future presence of the virus and the vector.

If all the conditions of vector and virus presence and population susceptibility and exposure are met, then 
given an original number of, for example, 40 Zika cases and a generation time of 20 days (15.6–25.6 days; 
standard deviation of 7.4 days)39, an R0 = 2 means that after four generations—each spaced ∼ 20 days—or in 
about 3 months, there would be a total of 600 locally transmitted cases arising from the original 40. Since R0 is 
proportional to the duration of infectivity, an ideal action would be to reduce the infective period of cases, such 
that the effective reproduction number, R , is reduced. For example, in NYC, with an expected R0 < 2 for JJA 
2016, any combination of strategies to reduce the effective duration of infectivity by over 50% would mean an 
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average R < 1 , which should stop the spread of Zika over time. Beyond the obvious vector control strategies (for 
which knowing in advance when it is not going to rain could be useful), increasing traveler health surveillance, 
reducing the symptom-onset-to-isolation times, and the mosquito bite rates via specialized clothing and personal 
protective items can all help decrease the reproduction number. Economic costs for fighting the Zika epidemic 
would be most probably higher for Miami, given the higher R0 value forecast for the summer.

As our second example, consider now the current dengue outbreak in Central America. To provide context, 
the number of dengue cases reported in 2019 was the highest on record in the  Americas40, and 30% larger than 
those reported in 2015. By the end of July 2019, Honduras, Guatemala, and Nicaragua had declared an epide-
miological alert, and cases kept increasing in those and other countries in Central America during the rest of 
the year, and during  202040. Four dengue serotypes (DENV1, DENV2, DENV3, and DENV4) are known to be 
presently circulating in the region.

The AeDES real-time forecast, initialized in June 2020, indicates relatively high probabilities of above-normal 
environmental suitability for most of Central America for July–September 2020, with most locations exceeding 
R0 = 2 (Fig. 6). The most recent (May 2020) seasonal climate forecasts provided by the International Research 
Institute for Climate and Society (IRI)41 suggest above-normal temperatures during the summer for most of the 
Yucatan peninsula, Guatemala and Honduras, and above-normal rainfall for almost all of Central America for 
that same season. Furthermore, the IRI forecasts also indicate increased probabilities for a borderline La Niña 
during the second half of 2020, which is typically (but not always) associated with above-normal rainfall condi-
tions in the region. Together, all these predictions suggest the present dengue outbreak will continue during the 
rest of 2020 and most likely will worsen.

The situation is exacerbated by the fact that SARS-CoV-2 has increased the population vulnerability in 
Central America by, among others, increasing food insecurity, which can impact the immune system of the 
average individual (increased susceptibility); decreasing human mobility (quarantine in households without air 
conditioning and poor environmental conditions can increase exposure to  mosquitoes15,26); and disrupting or 
hampering access to health services (decreased adaptive capacity). Furthermore, this compound effect involving 
the dengue and SARS-CoV-2 outbreaks is also expected to increase the number of coinfections in the  region42.

Figure 4.  Example of deterministic forecasts for Jun–Aug 2016, initialized in May 2016. (a) AeDES seasonal 
forecast of the expected value of R0 , along with the (b) forecast standard deviation ( σ ), presented to provide 
decision makers information about the forecast uncertainty. (c) Actual seasonal values of R0 , provided by the 
AeDES monitor sub-system.
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Figure 5.  As in Fig. 4 but for probabilistic forecasts. (a) Tercile-based forecast; with uncertainty presented in 
terms of probabilities for each category: below-normal (in blue), normal (green) and above-normal (in red). (b) 
Spatial forecast of probabilities of exceeding R0 = 3 . In the bottom panels, the “observed” (empirical in black, 
smoothed/parameterized in blue) and forecast (red) probability of exceedance distributions for (c) Miami, FL, 
and (d) New York City, NY, are also presented for comparison.

Figure 6.  Real-time environmental suitability forecasts for Central America, for Jul–Sep 2020, initialized in 
June 2020. (a) Tercile-based probabilistic forecast; with uncertainty presented in terms of probabilities for each 
category: below-normal (in blue), normal (green) and above-normal (in red). (b) Deterministic forecast.
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Concrete actions to deal with the situation are always context-specific and need to be coordinated with the 
local authorities. AeDES can help providing information to make those decisions; for example, rather than assign-
ing resources homogeneously to all regions in a country, or assuming that the present distribution of resources 
will be the same in the next following months, AeDES can be used to help decide which regions require more or 
less attention during the next season depending on specific thresholds and triggers, and how the resources need 
to change also in time. A combination of environmental suitability forecasts with weather and climate forecasts, 
can also inform when to implement particular actions within the season; for example, extreme rainfall (e.g., dur-
ing a potential La Niña in the coming months) can hamper vector control activities, provision of health services 
and medicines, transportation of goods and people, etc., and knowing with a high level of certainty when and 
where to act can be hugely beneficial to society.

A nextGen climate‑and‑health service for multiple timescales. AeDES is a “next generation” sys-
tem because (1) it successfully tailors global climate information to be used at regional scales, (2) pattern-based 
calibration targeting mean, amplitude, and spatial biases is performed using a monitoring system based on the 
same variable that is being predicted, and (3) it produces tailored deterministic and probabilistic forecasts for 
user-selected thresholds of interest, including the use of the entire probability density function (also known as 
“forecasts in flexible format”35), to better assess uncertainties.

Previous  research8,11,16 has underscored the importance of analyzing climate signals at multiple timescales to 
improve decision-making processes in the health sector. In particular, Muñoz et al.16 and Thomson et al.11 have 
shown that the seasonal-to-interannual timescale tends to explain most of the total variance observed in climate 
variables impacting vector-borne disease transmission, like temperature and rainfall. Hence, although the long-
term climate change and natural decadal variability signals also are considered, AeDES pays special attention 
to continuously providing actionable information at seasonal-to-interannual timescales, which along with the 
weather and sub-seasonal43 scales are the most often used for health early warning systems.

Due to large uncertainties in long-term climate projections, the present approach should in general not be 
used in combination with climate change scenarios. Nonetheless, the same approach is adequate for shorter-
term timescales, like the sub-seasonal (roughly 2–6  weeks43) or weather (0–2 weeks) ones. Providing actionable 
information at multiple timescales (e.g., via the IRI’s Ready-Set-Go  approach35). The team is presently exploring 
when and where predictive skill at these timescales is high enough to guide decision-making processes in the 
health sector, taking advantage of windows of opportunities in forecasts at those  timescales44.

Methods
Data. All analyses are conducted for the geographical domain defined by the coordinates 126° W–40° W and 
1° S–50° N (Fig. 1). The reference or “normal” period corresponds to 1982–2010.

Rather than focusing on particular diseases, here we considered common environmental thresholds and 
ento-epidemiological parameters for Aedes-borne diseases as a whole. If the parameters are well known for 
diseases of interests, then the same approach can be used to have tailored information for those cases. For 
consistency with previous studies and model validations, we used the same ento-epidemiological parameters 
reported by Liu-Helmersson et al.23, Wesolowski et al.22, Caminade et al.21 and Mordecai et al.24. The equations 
and parameter choice can be found in those references, and in our scripts used to build AeDES (see Data and 
Codes Availability below).

Two types of near-surface (2 meter) temperature datasets were used: observations and forecasts. Observa-
tions consist of gridded fields from NCEP’s GHCN-CAMS25 project, at 0.5 degree resolution. When designing 
the monitoring sub-system, additional observation datasets were used to compare between different spatial 
resolutions; these products are  CRUv445, at 0.5 degree resolution, and  PRISM46, at 0.042 degrees. All products 
were interpolated to the lower resolution (0.5 degree), and spatial correlations were computed for the 1982–2010 
period. No statistically significant differences were observed between the products at p = 0.05, using a simple 
t-Student test (not shown).

Given that the GHCN-CAMS dataset is freely updated every month and covers not only North America 
but also the boundary regions of interest (the Caribbean, Central America and northern South America), this 
product was selected to force the multi-R0 model for the monitoring sub-system, in the same way the AeDES 
hindcasts (described below) were computed, except that only one “realization” (the observed climate) was used. 
Although R0 is not a direct observable, for simplicity in this paper we refer to this set of environmental suitability 
maps as the “observed” (or actual) R0 . The approach is general and does not require GHCN-CAMS to work; if a 
different reliable observed temperature dataset is available (for example at higher spatial resolution), the system 
can use it. We recognize different products can exhibit important biases with respect to local station data, for 
example in relatively small and topographically complex island nations in the Caribbean. The AeDES system 
can be implemented locally in those cases to use a gauge-based dataset; in some cases, systematic biases between 
such dataset and GHCN-CAMS can be identified so the present system can still be used after local calibration.

The other temperature dataset consists of seasonal predictions from all models operationally available in 
the North American Multi-Model Ensemble (NMME)  project34, as in Muñoz et al.8, consisting of a total of 96 
ensemble members. AeDES presently uses the latest version of the Canadian climate model (CanSIPv2), after 
the older Canadian models were discontinued in August 2019.

In addition, the monitoring sub-system also presents infant mortality data from the Socioeconomic Data 
and Applications Center (SEDAC; https ://sedac .ciesi n.colum bia.edu/data/colle ction /povma p), and the Gridded 
Population of the World, Version 4 (GPWv4), Revision  1147,48.

https://sedac.ciesin.columbia.edu/data/collection/povmap
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0
 models and design of the next generation forecast sub‑system. We used four previously 

developed R0 models for Aedes-borne diseases, described in detail by Caminade et al.21, Liu-Helmersson et al.23, 
Wesolowski et al.22 and Mordecai et al.24. These R0 models include terms for several temperature-dependent 
processes that affect mosquito-borne transmission, including: mosquito biting rate; vector competence, or the 
proportion of infectious bites that infect susceptible humans and the proportion of bites on infected humans 
that result in mosquito infection; adult mosquito mortality rate; extrinsic incubation period (EIP), or the time 
between an uninfected mosquito biting an infected human and the mosquito becoming infectious; the daily egg 
production rate by a female mosquitoes, and egg- and juvenile-stage survival probability and development rates.

Results from Mordecai et al. show a unimodal response to temperature for dengue transmission, with trans-
mission by Ae. aegypti peaking at 29.1 °C (95% CI 28.4–29.8 °C), but occurring between 17.8 and 34.6 °C24. Trans-
mission by Ae. albopictus was shown to peak at 26.4 °C (95% CI 25.2–27.4 °C), but occurred between 16.2 and 
31.6 °C. Biological traits such as adult survival, vector competence, and extrinsic incubation period vary across 
vector species and upon infection with different  arboviruses49. However, modeling studies of Zika and dengue 
transmission by Ae. aegypti show that optimal temperatures for vector competence and EIP are similar for both 
viruses. For example, vector competence for dengue peaked between 31 and 32 °C in both mosquito species, and 
for Zika peaked at 30.6 °C in Ae. aegypti24,50. Meanwhile, the EIP optimum for dengue was approximately 35 °C 
for both mosquito species, and for Zika was 36.4 °C in Ae. aegypti. Therefore, at regional and continental scales, 
we find sufficient evidence to discuss R0 values as parameterized for Aedes-borne diseases as a whole. Mathemati-
cally, the contribution to the total R0 presented in AeDES of each Aedes vector is computed, as usual, via the 
Euclidean norm (e.g., see Eq. (19) in Muñoz et al.8, or Eq. (1) and supplemental material in Caminade et al.21).

To build the R0 hindcasts, all four R0 models were forced independently using each one of the 96 NMME 
climate realizations (i.e., a total of 384 realizations) in hindcast—or retrospective forecast—mode for each season 
and year in the 1982–2010 period (29 years). For example, all May initializations in the 1982–2010 period were 
used to obtain the 29 NMME temperature hindcasts JJA seasons, which were then used to force each one of the 
R0 models to produce the 1982-2010 environmental suitability hindcasts. Hence, a total of 4,608 (4 R0 models 
times 12 initializations times 96 climate model members) 29-year long seasonal hindcasts were produced.

We then performed a pattern-based calibration for each season and model independently, to avoid mixing 
models with different characteristics when correcting for mean, amplitude, and spatial biases. Following the 
approach of Muñoz et al.8, the calibration method selected was principal component regression (PCR)51. The 
PCR-based calibration approach builds a regression model for each grid box of the “observed” R0 field, using a 
linear combination of the hindcast R0 ’s Empirical Orthogonal Functions (EOFs). These EOFs represent spatio-
temporal patterns of R0 in each model, and vary in magnitude, space, and location through the initializations—
one per calendar month. For a given initialization, say January, and set of EOFs, each grid box has in general 
a different set of regression coefficients associated with each one of the EOF. The best cross-validated models 
were identified using a leave-five-out cross-validation window and the value of Kendall’s τ coefficient, which also 
defines the final number of EOFs for each model. Since a different PCR model is built for each grid box in the 
predictand domain, the number of EOFs can vary not only depending on the season. To avoid overfitting, we 
required a maximum of 5 EOFs, so the number ranged from 2 to 5 EOFs, depending on the season.

The AeDES multi-R0 calibrated ensemble mean was computed using each calibrated model, providing deter-
ministic outcomes, and the entire probability density function (PDF) for R0 , computing in that case the average 
of the Gaussian distribution parameters for each grid box (i.e., an ensemble built in the “probability space”). This 
means that, for each grid box, we independently averaged the location and shape parameters of the Gaussian 
distribution (i.e., the mean and the variance) provided by each one of the 384 members of the ensemble. Thus, 
each grid box has a final probability density function defined in terms of the average mean and the square-root of 
the average variance. We repeated this process for each of the 12 initializations. Note that the thresholds defining 
the below-normal and above-normal categories are computed independently for each grid box and season, using 
the mean and standard deviation defining the probability density functions produced by the monitor sub-system.

The PDF is used to offer uncertainty information for decision makers in the health sector and to compute 
the forecast probability of exceeding thresholds selected by the user. Tailored probabilistic forecasts produced 
using the entire PDF are often called “forecasts in flexible format”35. These products are available in the AeDES 
Maproom (https ://aedes .iri.colum bia.edu).

The forecast skill assessment was conducted for each calibrated R0 model and the AeDES ensemble system 
for the 1982–2010 period, using the “actual” R0 (computed from the observed climate data) available from the 
monitoring sub-system as reference, and the two-alternative forced  choice31 (2AFC) metric. As indicated in the 
“Forecast sub-system calibration and evaluation” section, the 2AFC measures discrimination, or how well, for 
example, the system can distinguish between above-normal, normal, and below-normal categories. For a given 
location, values of 100% indicate AeDES has perfect discrimination, and values below 50% indicate that the 
system has worse discrimination than considering the 29-year-long average for that particular location, and thus 
are values associated with no predictive skill. Two contrasting seasons were selected for analysis in this study: 
boreal winter and summer.

The calibration and skill assessment processes were computed using the International Research Institute 
for Climate and Society’s (IRI) Climate Predictability Tool (CPT) version 16.3.252, and its Python  interface53 
(PyCPTv1.7; https ://bitbu cket.org/py-iri/iri-pycpt /src/maste r/) to facilitate the mass production of the differ-
ent hindcasts, skill assessment maps and forecasts. The resulting files were migrated to the IRI Data Library for 
public archiving and plotting.

https://aedes.iri.columbia.edu
https://bitbucket.org/py-iri/iri-pycpt/src/master/
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Data availability
All input and produced data is freely available at the International Research Institute for Climate and Society’s 
Data Library: http://iridl .ldeo.colum bia.edu/home/.agmun oz/.Aedes /#info.

code availability
Code is available on Muñoz’s GitHub account: https ://githu b.com/agmun ozs/Vecto rborn edise ases.
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