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The mammalian meat allergy known as the ‘‘a-Gal syndrome’’
relates to IgE specific for galactose-a-1,3-galactose (a-Gal), an
oligosaccharide that is present in cells and tissues of nonprimate
mammals. The recognition of delayed reactions to food derived
from mammals in patients with IgE to a-Gal and also the
association with tick bites have been increasing worldwide. In
2018, the National Institute of Allergy and Infectious Diseases,
Division of Allergy, Immunology and Transplantation, sponsored
a workshop on this emerging tick-related disease. International
experts from the fields of tick biology, allergy, immunology,
infectious disease, and dermatology discussed the current state of
our understanding of this emerging medical condition. The
participants provided suggestions for specific research priorities
and for the development of resources to advance our knowledge
of the mechanisms, diagnosis, management, and prevention of
this allergic disease. This publication is a summary of the
workshop and the panel’s recommendations are presented
herein. (J Allergy Clin Immunol 2020;145:1061-71.)
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Bristol-Myers Squibb facilitated collaboration with the oncology
group at Vanderbilt who provided the pretreatment sera and con-
trol sera from central Tennessee. Once the assay for IgE to a-Gal
was available, it became clear that there were patients in allergy
clinics in Charlottesville, Virginia, and also in Springfield, Mis-
souri, who reported delayed reactions to mammalian meat and
who had IgE specific for the same oligosaccharide.3 Over the first
year it became clear that there were also cases in North Carolina,
Tennessee, and Arkansas. This not only matched the distribution
of cases of reactions to cetuximab but also resembled the map of
the maximum density of Rocky Mountain spotted fever (RMSF)
published by the Centers for Disease Control and Prevention
(CDC).4 This provided a clue that this form of sensitization might
be related to tick bites. Interestingly, 2 earlier abstracts had re-
ported cases of mammalian meat allergy that were associated
with preceding tick bites. The first was 5 cases in Athens, Georgia,
reported to the Georgia Allergy Society in 1989 by Anthony
Deutsch (personal communication). The second was reported by
Sheryl van Nunen to the Sydney Allergy Society in 2006 on pa-
tients who had been bitten by ticks in the North Shore of Sydney.5

Dr van Nunen published her cases in 2009 and related them to the
tick Ixodes holocyclus.6 Interestingly, investigators in Sweden had
made another early observation that was relevant to the unfolding
story. Marianne van Hage’s group reported in 2007 that some pa-
tients in Stockholm had IgE antibodies specific for an oligosac-
charide on cat IgA,7 which was subsequently shown to be a-
Gal.8 Finally, Uta Jappe in Germany had been investigating
allergic reactions to the consumption of pork kidney as early as
2005, which in subsequent work with Tilo Biedermann were
confirmed to be related to IgE to a-Gal.9-11 Thus, the discovery
that a-Gal was an epitope for IgE on mammalian glycoproteins
connected a series of previous observations that had not been
recognized as related. It is important to remember that this glycan
is also the ‘‘B-like antigen’’ that Karl Landsteiner recognized on
the red cells of mammals nearly a century ago, that it can also
be present on glycolipids, and that it is a major xenotransplanta-
tion barrier (Fig 1, A and C).12-14

In June of 2018 a workshop was convened in Bethesda,
Maryland, under the auspices of the National Institute of Allergy
and Infectious Diseases. This workshop was designed to evaluate
the evidence that had been published since 2008, and in particular
to lay out a background and plan for future research into the
causes and consequences of IgE-mediated mammalian meat
allergy and the contributions of a-Gal sensitization. The primary
areas discussed included the following:

1. Review of the clinical syndrome in North America and
comparison with the European experience and emerging
work from South Africa.

2. Current understanding of the mechanisms by which tick
bites can induce IgE responses to this particular
oligosaccharide.

3. Factors relevant to the severity and symptoms of allergic
reactions in patients who are sensitized to a-Gal as well
as the mechanism and significance of the delay in clinical
responses after eating mammalian meat.

REVIEW OF CLINICAL SYNDROMES RELATED TO

a-GAL–SPECIFIC IgE
As an oligosaccharide of nonprimatemammals and NewWorld

monkeys, a-Gal can be present on glycoproteins and glycolipids
of a multitude of products derived from mammals. This can
include skeletal muscle, organs, milk, and gelatin, but also other
products such as biological drugs and vaccines that are prepared
with mammalian cells or constituents.15 As such the term ‘‘a-Gal
syndrome’’ (AGS) is often used to describe allergic reactions to
mammalian meat and other a-Gal–containing products derived
from mammals.9,16 In patients with an appropriate clinical his-
tory, the main method of diagnosis is the measurement of IgE to
a-Gal. Several a-Gal–bearing glycoproteins have been used on
the solid phase of the assay, but the 2 most widely reported
have been beef thyroglobulin and cetuximab. Importantly, the per-
formance characteristics of the assay have been similar with both
glycoproteins.3,17,18 It is also important to highlight that not all
subjects who are sensitized to a-Gal report allergic reactions to
mammalian meat. For example, among 300 hunters and forest
workers in Southwest Germany, the prevalence of IgE to a-Gal
was 19.3%, but among the 58 subjects who were positive (cutoff,
0.35 IU/mL) only 5 had allergic symptoms to mammalian meat or
innards.19 Thus, as with other allergic diseases, a good clinical
history plays an important role in the diagnosis of the syndrome.
Anaphylaxis during treatment with cetuximab
These reactions that occur during the first infusion of the drug

can be very severe and rapid and clearly relate to preexisting IgE
antibodies to a-Gal.1,2 Screening patients with an IgE assay could
reduce the risk of reactions; however, severe reactions to cetuxi-
mab can also occur in subjects who are not sensitized to a-Gal.
The predictive value of the test is expected to vary in different pa-
tient populations, but the a-Gal IgE test has shown a sensitivity of
75% to 92% and a specificity of 90% to 92%.1,20 To date, use of an
IgE assay specific for a-Gal has not been recommended as a
screening procedure for use of this drug.20 There have been
several consequences following the initial description of the syn-
drome. The most important is the increased awareness of the
possible relevance of glycosylation on recombinant molecules
to allergic or other reactions during treatment, including consid-
eration given to the cell line used for the generation of the mole-
cules.21-23 In keeping with that, many recently developed mAbs
have the a-Gal glycosylation site on the Fab region engineered
out. A related question is whether the immune response to tick
bites can induce significant IgE to other relevant oligosaccha-
rides.24 To date, limited studies in subjects who are positive for
IgE toa-Gal (and had histories of tick bites) have not revealed sig-
nificant IgE to other oligosaccharides.25,26
Allergic reactions to gelatin-containing vaccines

and other mammalian-related pharmaceuticals
Recent evidence suggests that some patients can react to

vaccines that are prepared in culture systems or with excipients
that are derived from nonprimate mammals. For example, Stone
et al27 reported a case with a history of delayed anaphylaxis to
mammalian meat who experienced anaphylaxis upon receipt of
Zostavax. In a subsequent report, the same group described a
similar pediatric case who reacted to the measles, mumps, and
rubella vaccine.28 In both cases, the patient’s serum had IgE
that bound to preparations of the relevant vaccine and, impor-
tantly, the in vitro activity was lost when a-Gal–specific IgE
was depleted. Further investigation suggested that gelatin in the
vaccine preparation was likely the source of the a-Gal. Taken
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FIG 1. Depiction of the structure of the a-Gal epitope and representative a-Gal–bearing glycoproteins and

glycolipids. A, The structure of the complete a-Gal trisaccharide epitope (galactose-a-1,3-galactose-b1,4-

GlcNAc) in comparison to the blood group B antigen. B, Cetuximab is a chimeric mouse-humanmonoclonal

IgG that expresses a-Gal glycans. Although a-Gal can be present in the Fc domain, the strongest expression

of a-Gal, and that which is recognized by IgE antibodies, occurs in the Fab domain. The dominant form of

a-Gal that is present in cetuximab is a bi-antennary glycan. C, Lipid forms of a-Gal are less well studied than

their glycoprotein counterparts, but it is known that nonprimate erythrocytes are an abundant source of

O-linked glycosphingolipids, which can bear a-Gal epitopes.
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together, individuals with histories of severe reactions tomamma-
lian meat or gelatin could be good candidates for allergy consul-
tation and consideration to graded administration of relevant
vaccines. However, it is important to realize that many individuals
who are sensitized toa-Gal have tolerated gelatin-containing vac-
cines (which in the United States currently include measles,
mumps, and rubella vaccine, Zostavax, yellow fever, rabies,
oral typhoid, and FluMist).29,30 It is possible that measuring IgE
to gelatin could be useful for stratifying risk to gelatin-
containing vaccines, but we are unaware of studies that have ad-
dressed this.

In addition to vaccines there are other pharmaceutical products
and devices that have the potential to contain a-Gal epitopes. For
example, Fischer et al31 and others32 have reported on a putative
link between a-Gal IgE and immediate reactions to antivenom.
As addressed in a recent review, there have also been case reports
relating AGS to heparin, magnesium stearate, pancreatic enzyme
replacement (eg, pancrelipase), gelatin-containing vaginal cap-
sules, and porcine-derived heart valves.15,33-38 Further research
is needed to determine whether these products carry a-Gal, either
consistently or sometimes, and whether the concentration is suf-
ficient to cause clinical reactions.
Reactions related to meat and other mammalian

products that are ingested
There are multiple surprising features of AGS, but the 2 most

important are that it can develop at any age and, in contrast to
the immediate reactions to infused cetuximab, there is almost
always some delay after ingestion before symptoms start. In a
recent analysis of 261 adults and children presenting for
evaluation of allergic symptoms to mammalian meat in central
Virginia, 248 cases consistent with AGS were identified.39 Pa-
tients’ age ranged from 5 to 82 years, and 84% reported symp-
toms beginning at least 2 hours after ingestion of mammalian
meat (median, 240 minutes). This delay in symptom onset,
which has also been reported from Europe,40 was consistent
with the results of challenge studies that Commins et al41 re-
ported in 2014 on a similar population where all patients had
a delay of at least 150 minutes. The extent of delay has not
been unanimous across all studies, however. Mabelane et al42

described a median onset of symptoms of 100 minutes in chal-
lenges conducted in a cohort in rural South Africa. In this
cohort, the likely cause of the sensitization was locally prevalent
ticks, but the study was also notable for a large proportion of
children who reacted to challenge. Tilo Biedermann’s group
in Germany reported similar kinetics when using pork kidney
for the challenges.10 The explanation for the differences in
timing between the studies could relate to the specific patient
populations investigated or the type of product used for chal-
lenge (ie, beef muscle vs pork kidney). Regardless, we would
highlight that most reactions occurred more than 1 hour after
ingestion in all the aforementioned studies (Fig 2, A). The
allergic reactions have not differed by age, with children as
likely as adults to report urticaria, gastrointestinal distress,
and/or anaphylaxis with an equally delayed response.39,42,43
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FIG 2. A, Time course of self-reported symptom onset of allergic symptoms in 261 patients evaluated for

mammalian meat allergy, of which 248 had IgE testing consistent with AGS, from Wilson et al.39 B, Results

of basophil activation as assessed by CD63 expression in PBMCs drawn sequentially following mammalian

meat challenges in individuals with known AGS from Commins et al.41
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Most a-Gal meat allergy reactions reported in the literature
focus on the presentation of delayed pruritus, urticaria, angioe-
dema, and anaphylaxis.3 More recently, and at the workshop, re-
searchers have described reactions that manifest with abdominal
pain—both in conjunction with skin reactions and as isolated
gastrointestinal reactions. For example, Marianne van Hage re-
ported that 74% of the 128 participants in her Swedish cohort re-
ported gastrointestinal symptoms (unpublished data, 2020), so did
64% in the Virginia cohort.39 Mabelane et al42 reported a large
case series of challenge-proven a-Gal allergy with high preva-
lence of isolated abdominal reactions (; 20%); surprisingly, the
time to onset of symptoms did not differ between individuals
with isolated abdominal symptoms and thosewith skinmanifesta-
tions and therewere no differences ina-Gal IgE levels between the
groups. Anecdotally, there are patients in whom the initial symp-
toms were restricted to the gastrointestinal tract but over a period
of weeks or months, in some cases following additional tick bites,
the symptomatology expanded to include the skin and/or anaphy-
laxis. It is, therefore, possible that isolated abdominal pain is an
underreported and underdiagnosed feature of AGS.44

Patients with a-Gal food allergy report marked intraindivid-
ual variability in the dose that causes a reaction.45 Many
describe mild or no reactions with some exposures, yet have se-
vere symptoms on repeat exposure to the same food served in a
similar amount and preparation. This variation in susceptibility,
at least in part, appears to be modulated by cofactors.46 In keep-
ing with many other forms of food allergy, the most prominent
cofactors associated with a-Gal consumption reactions are exer-
cise, alcohol, and nonsteroidal anti-inflammatory medica-
tions.10,41,45 Theoretically, exposure to these cofactors may
enhance absorption of the antigen, may decrease the threshold
of response, and/or contribute to the severity of the allergic re-
sponses to a-Gal.47 Another possible explanation for the vari-
ability is that the amount of a-Gal varies in different foods.
Unfortunately, this is a topic that has not been systematically
examined; however, a-Gal content appears to be particularly
high in foods derived from internal organs.48 In addition, con-
sumption of lipid-laden mammalian meat has been associated
with more consistently severe hypersensitivity responses in sub-
jects allergic to a-Gal.49 There are also marked interindividual
differences in susceptibility to a-Gal. This runs the gamut from
patients who are sensitized to a-Gal but are consistently asymp-
tomatic when ingesting mammalian meat to those who react to
minor quantities of a-Gal present in milk and gelatin-containing
medications and sweets.19,50,51 For example, a-Gal patients
with concomitant mastocytosis can react to very small amounts
of pork kidney (3 g).52
What explains the delay in symptom onset after

ingestion of mammalian meat?
The observations about the symptom delay from patient reports

and challenge studies are reinforced by a study of basophils
collected from patients who underwent mammalian meat chal-
lenge. In this study, in which the basophils did not receive any
ex vivo stimulation, basophils collected at early time points did
not exhibit appreciable activation but the activation marker
CD63 increased significantly over baseline in blood that was
drawn between 3 and 5 hours after challenge (Fig 2, B).41 Under-
standing themechanism that explains the delay remains an impor-
tant objective. Differences in timing following the ingestion of
mammalian meat and organs, as reported by Tilo Biedermann’s
group, suggests that differences in the quantity or ‘‘quality’’ of
a-Gal present in different tissues could be an important element
in explaining the delay.10 An important qualitative consideration
is thata-Gal can be present on not only glycoproteins but also gly-
colipids. It is well established that a-Gal–bearing glycosphingo-
lipids are an important source of the glycan in nonprimate
mammalian cells, tissues, and organs (including kidneys).53-55

The argument for this ‘‘glycolipid hypothesis’’ revolves around
the fact that the digestion, absorption, and processing of lipids oc-
curs with kinetics very similar to the delay in symptom onset.47

Lipid processing relies on transit via chylomicrons through the
thoracic duct before arriving into the systemic circulation at the
left subclavian vein. The lipid cargo subsequently transitions to
progressively smaller lipoprotein particles, including low-
density lipoprotein particles, which are sufficiently small to
passively filter through the vasculature into the interstitium (ie,
;20 nM).56 Studies with radiolabeled lipids have demonstrated
that the peak lipid level at the thoracic duct occurs 4 hours after



FIG 3. Representative cross-sectional imaging of coronary arteries of a

subject without (left) or with (right) IgE to a-Gal.59 Images obtained by intra-

vascular ultrasound, with central black area representing the lumen of the

coronary artery and surrounding colored areas indicative of atherosclerotic

lesions with fibrous (dark green), fibrofatty (light green), necrotic (red), and

calcified plaques (white) evident. Images courtesy of Angela Taylor, MD,

University of Virginia Health System and the National Heart, Lung, and

Blood Institute.

Box 1. Evidence supporting a role for tick bites in the induction of
IgE to a-Gal4,6,19,72,73,89,102

1. Epidemiology: Overlap in cases of the AGS with the dis-

tribution of the lone star tick (in North America)

2. Cases: Prospective investigation of a small number of

subjects who have had tick bites

3. Many subjects who make IgE to a-Gal also make IgE

directed to other elements of tick extract

4. Identification of the epitope in tick midgut and saliva

5. Models using a-Gal knockout mice where saliva or sali-

vary gland extract is sufficient to recapitulate the

syndrome
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a meal, and the peak level in tissue (eg, muscle) 5 hours after the
meal.57 This kinetic pattern corresponds with the clinical experi-
ence and the result of the ex vivo basophil testing. Recent studies
using an in vitro Caco-2 gut barrier model have provided addi-
tional support for this hypothesis because beef-derived a-Gal gly-
colipids, but not glycoproteins, passed through the epithelial cells
and were packaged into chylomicrons.58
Relevance beyond traditional allergic disease?
In addition to the isolated gastrointestinal symptoms that were

previously discussed, preliminary evidence reported by Wilson
et al59 suggests that a-Gal sensitization could be a risk factor for
coronary artery disease. Among a population of 118 adults in Vir-
ginia who underwent coronary catheterization at the discretion of
their cardiologist, 26% had measurable IgE to a-Gal (cutoff, 0.1
IU/mL). Using highly sensitive intravascular ultrasound imaging,
the sensitized group was found to have a greater burden of athero-
sclerotic plaques and their plaques had high-risk features, as as-
sessed by the extent of atheroma calcification and necrosis
(Fig 3). Importantly, the association was significant in multiple
variable regression analyses accounting for traditional cardiovas-
cular risk factors. Although a connection between allergic disease
and atherosclerosis may not be obvious to most physicians, there
is already good evidence in the cardiology literature for a link be-
tween both mast cells and IgE with atherosclerosis development
and severity.60,61 Cardiac anaphylaxis, commonly known as
Kounis syndrome, further supports a link between allergic disease
and coronary artery disease.62,63 In thinking about a putative
mechanism, it may also be relevant to consider that a-Gal can
exist as a glycolipid antigen. Although dietary and allergic history
of the study participants in the report by Wilson et al was not
available, it is expected that many and possibly most study partic-
ipants were asymptomatic and, thus, in all likelihood were
continuing to consume mammalian products. This inference is
based on our understanding of differences in the prevalence of
a-Gal sensitization in the community (and high-risk populations)
as compared with the prevalence of subjects who report symp-
toms to mammalian meat.19 The association between a-Gal IgE
and coronary artery disease does not offer evidence of causality
and requires confirmation in larger populations.64
THE TICK CONNECTION: WHAT CONTROLS THE

DISTRIBUTION OF CASES OF THE AGS AND HOW

IS IT LIKELY TO CHANGE?
In the United States, cases of immediate reactions to cetuximab

and delayed anaphylaxis to mammalianmeat have been strikingly
regional, and it was the overlap of those cases with the CDC map
of cases of RMSF that helped establish the initial tick connection.
Ten years later, it is now clear that the CDC map is actually most
consistent with a family of spotted fever-group rickettsiosis, and
not with cases of bona fide RMSF.65 In keeping with this, the tick
Amblyomma americanum, commonly known as the lone star tick,
rarely carries Rickettsia rickettsii (the cause of RMSF), but
commonly carries a nonpathogenic or minimally pathogenic
spotted fever-group rickettsiosis called Rickettsia amblyomma-
tis.66-69 The abundance of a-Gal cases in Virginia, North Car-
olina, Tennessee, Arkansas, Oklahoma, and Missouri, and also
the eastern tip of Long Island, NY, is highly consistent with the
area where A americanum is endemic.70,71 The connection be-
tween a-Gal sensitization and tick bites is further supported by
a number of experimental studies and also the observation that
subjects with AGS who avoid recurrent tick bites, but not those
who report ongoing tick bite(s), experience a decline in their
a-Gal IgE titers (see Box 1).72-74 In Sweden, AGS cases are
also regional and match the distribution of Ixodes ricinus.40 In
particular, cases are not reported in or north of Ume�a. In France,
Germany, and Spain, cases have been identified in wide areas and
may relate primarily to outdoor activity.19 In these areas, the ev-
idence also relates to I ricinus.9 In Australia, the cases of delayed
anaphylaxis to mammalian meat are restricted to a region north
and south of Sydney extending as far inland as Canberra, an
area that is the primary distribution of the tick I holocyclus.75

Formal studies characterizing the incidence and prevalence of
AGS have been lacking, but it is clear from reports in the United
States and Europe that sensitization to a-Gal can reach 10% to
20%of the population in some regions.4,19,76 Notably, these levels
of community sensitization (ie, 10%-20%) occur only in those
areas where ticks are common and are much higher than the prev-
alence found in areas where ticks are rare.1

Ongoing efforts to determine the distribution of AGS in the
United States have generally confirmed that cases are most
common in areas whereA americanum (but not Ixodes scapularis,
the primary vector for Lyme disease) is established; nonetheless,
unpublished evidence presented at the workshop by Thomas
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Platts-Mills has suggested 2 anomalies (see Fig 4, A and B).77

First is the presence of a cluster of more than 20 cases reported
in northern Minnesota. This is interesting because A americanum
is not known or expected to be established in this region because
of climatic conditions.78,79 These cases suggest that North Amer-
ican ticks beside A americanum could be relevant to a-Gal sensi-
tization and/or that agents other than ticks could contribute to
a-Gal sensitization.80 A second anomaly is the lack of AGS cases
in the Gulf Coast and Texas, an area where the CDC reports that A
americanum is established.78,79 This finding, although prelimi-
nary, suggests that lone star tick populations could be decreasing
in abundance in the Gulf Coast and Texas. There are some predic-
tions that such a pattern could be expected as part of future
climate change, but it is not clear this has been a factor to
date.78 Dr Platts-Mills suggested an alternative possibility, which
relates to the steady expansion of an established tick predator in
the Gulf Coast region—the imported fire ant.81 In support of
this idea, evidence was presented for a negative correlation be-
tween cases of fire ant anaphylaxis and cases of the AGS in the
Deep South. Relatedly, during theworkshop, therewas discussion
about a connection between rising tick populations and increasing
numbers of white-tailed deer in urban and suburban environ-
ments. Indeed, the significance of this increase in deer popula-
tions in relation to tick-borne zoonoses associated with the lone
star tick was described as ‘‘ecological havoc’’ by Paddock and
Yabsley82 in 2007.
How do bites from ticks of many species induce IgE

to a-Gal?
Evidence has been published relating mammalian meat allergy

to bites of A americanum,4 l ricinus,19,72 l holocyclus,6 Haemo-
physalis longicornis,83 and most recently Amblyomma testudina-
rium.84 In each case, there was a dominant IgE response specific
for a-Gal. However, the evidence does not exclude other ticks.
Most importantly, we do not know the mechanism whereby a
tick bite can lead to induction of IgE specific to a-Gal. Speaking
to the question of why only certain ticks have been associated
with a-Gal IgE sensitization, Maria Diuk-Wasser discussed the
possibility that differences in tick habitat, questing behavior,
and/or anatomy could be relevant. She also highlighted the unex-
plained observation that although I ricinus is the dominant cause
of sensitization to a-Gal in Europe, its phylogenetic North Amer-
ican relative I scapularis is almost certainly not a major cause of
sensitization in the United States.

In regard to mechanism, tick saliva is suspected to play an
important role, which is consistent with the remarkable
complexity of tick saliva and the view that ticks represent
venomous ectoparasites.85-87 Despite the fact that a-Gal has
been identified in the midgut and saliva of several species of
hard ticks, the source of the a-Gal remains uncertain.
A possibility is that ticks can intrinsically produce the oligosac-
charide, but this has been questioned because the enzyme that cat-
alyzes the generation of a-Gal in vertebrates (a1,3-
galactosyltransferase) has not been identified in ticks.88 Two
alternative possibilities are that (1)a-Gal could be present in ticks
because of a prior blood meal on a nonprimate mammal, or (2)
Rickettsiales or other symbionts present in tick saliva could ex-
press a-Gal and be transferred to a human host during a tick
bite. Evidence for these competing hypotheses are detailed in
Table I, though notably emerging evidence increasingly suggests
that ticks can intrinsically generate thea-Gal glycan.88-91 Crispell
et al90 reported that a-Gal was not detectable in the salivary
glands of unfed adult A americanum; however, the a-Gal glycan
was detectable after the ticks were fed using an artificial feeding
model where a siliconemembrane covered human blood. Further-
more, Apostolovic et al89 have reported that larval ticks contain
a-Gal–carrying proteins and these larvae were not fed on the
host, which supports the view that a-Gal–carrying proteins orig-
inate from ticks.

Another important question that was the focus of comments by
Lisa Beck relates to why tick bites are so effective at inducing IgE
responses in humans and whether the skin plays an important role
in facilitating this response. For example, we recognize that the
skin is an important route for IgE responses to parasites,
venomous insects, and also to foods such as peanut.92-94



TABLE I. Description of the 3 main hypotheses to explain the source of the glycan that leads to an IgE response directed to the a-

Gal epitope

Hypothesis Supporting evidence Conflicting evidence

1. Certain ticks can intrinsically produce a-

Gal, either at baseline or during feeding

d Work from the groups of Marianne van

Hage and Shahid Karim investigating tick

extracts by Western blot and mass

spectrometry

d Cabezas-Cruz et al88 reported that galacto-

syltransferase enzymes other than the a1,3-

galactosyltransferase can generate a-Gal

(ie, a1,4- and b1,4 galactosyltransferases,

which have been identified in ticks)

d No evidence that ticks express the specific

enzyme that is thought to be necessary to

catalyze the terminal a-1,3 bond

2. The a-Gal present in tick saliva is residual

from a prior blood meal of a nonprimate

mammal

d Hard ticks have 3 life stages and their nat-

ural hosts are often mammals that would

have a-Gal

d Does not explain how larval (ie, seed) ticks

can acquire the epitope

d Unclear whether a-Gal and other constitu-

ents of blood meal would persist inside tick

for the duration, often many months, be-

tween different blood feeds

3. The a-Gal present in tick saliva is pro-

duced by a microbial symbiont of ticks

d Multiple bacteria and parasites can express

the glycan

d Lack of any established association with

known tick-borne diseases

d No published reports have demonstrated

that microbes common to relevant ticks

express a-Gal
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High-titer IgE is also a hallmark of atopic dermatitis.95

Interestingly, however, in the experience of the panel, AGS
does not appear to be overrepresented among subjects with atopic
dermatitis. This suggests that intrinsic barrier defects in the skin
are not a prerequisite for the syndrome. Perhaps this is not
surprising given that tick ‘‘mouthparts’’ can penetrate through
the epidermis and generate a local inflammatory response in the
dermis.96 Nonetheless, the skin may represent a tissue microenvi-
ronment that strongly favors the development of IgE (and type 2
immunity generally), a position that is supported by recent work
in mice that demonstrated that GATA-3, a ‘‘master’’ regulator of
type 2 immunity, is particularly abundant in effector and regula-
tory T cells of the skin.97 The idea that IgE responses to tick
depend on presentation via the skin is also supported by a recent
report that showed that subcutaneous but not intraperitoneal inoc-
ulation of tick extracts elicited a robust specific IgE response.98
Animal models and investigations of the tick-host

interface and host immune response
Despite increased awareness, the mechanism of several aspects

of mammalian meat allergy remain unknown. The link between
tick bites and the development of IgE to a-Gal is strong, though
notably the IgE response does not develop in all individuals bitten
by ticks.4,74,84,99,100 To investigate the mechanisms driving IgE
responses to a-Gal as well as the delayed reaction, investigators
recognize the need for an animal model of mammalian meat al-
lergy. Barriers to a mouse model include the fact that mice natu-
rally remove ticks and also that mice express a-Gal (hence they
do not naturally make anti-Gal antibodies). To overcome the first
obstacle, Susan Little and Brian Herrin at Oklahoma State Uni-
versity developed a small chamber to allow prolonged exposure
and tick feeding of mice. In multiple experiments, A americanum
ticks feeding on CH3/HeN mice for 10 to 14 days induced a sig-
nificant increase in total IgE compared with control mice. The
magnitude of the IgE response appeared to be dose-dependent
because mice with greater numbers of ticks that were attached
and feeding had higher total IgE levels. Although these experi-
ments demonstrated the feasibility of using mice to examine the
IgE response to tick bites, the inherent variability in dosing asso-
ciated with live tick feedings has led to the development of tick-
independent methods for delivery of tick-associated factors to
mice. The second barrier has been addressed with the use of
a-Gal ‘‘knockout mice,’’ in which the gene that encodes for
a1,3-galactosyltransferase has been genetically modified. An
initial report by Araujo et al73 demonstrated that subcutaneous
inoculation of saliva from Amblyomma sculptum, or direct
feeding of the same ticks, induced an IgE response in a-Gal–defi-
cient mice that bound a-Gal epitopes presented on virus-like par-
ticles. Similarly, Scott Commins presented studies at the
workshop that used a model where salivary gland extract from
partially fed A americanum was repeatedly inoculated into a
different transgenic model of a-Gal–deficient mice. These mice
produced an a-Gal–directed IgE response and also demonstrated
systemic allergic reactions, as measured by a decrease in body
temperature, following injection of a-Gal–containing antigen
(cetuximab) or gavage with pork.101,102 As stated above, a recent
article by Chandrasekhar et al98 provides additional evidence that
the skin plays an important role in sensitization to tick proteins.
Subcutaneous inoculation ofA americanum larval extracts (whole
body), but not intraperitoneal injection of the same extracts, eli-
cited a robust tick-specific IgE response in wild-type mice.98

The same investigators also looked at a-Gal–specific IgE re-
sponses using the a-Gal knockout mice. Cutaneous sensitization
using a tick extract that wasmodified to includea-Gal-BSA led to
an induction of IgE specific to a-Gal as well as an increase in the
frequency of activated basophils following beef thyroglobulin
challenge.98

It is anticipated that further development and investigation
using mouse models will help identify specific constituents of
the tick ‘‘sialome’’ that act as adjuvants to promote IgE and type
2 immune responses.85 Putative candidates within the tick that
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could have this activity include prostaglandins, phospholipases,
and lipocalins.85,86,103,104 Animal models will also be helpful to
characterize the nature of the host immune response that con-
tributes to the generation of IgE to a-Gal. There are reasons
to think that basophils may play an important role in promoting
IgE induction to a-Gal. For several decades it has been known
that mammalian hosts can develop acquired immunity that pro-
tects against subsequent tick infestation, and it is becoming
increasingly clear that basophils, as well as IgE, play an impor-
tant role in this process.105-107 In an area of Japan where Am-
blyomma testudinarium is common, a recent publication
demonstrated that IgE to a-Gal was common in subjects with
recurrent tick bites and that the number of basophils at the
site of tick penetration increased with repeated tick exposures.84

Tilo Biedermann reported that in his cohort in Germany he and
his colleagues have also observed elevated levels of basophils at
the site of tick bites. Interestingly, his group has also recently
reported that urticaria at the site of a prior tick bite can be an
early sign of an allergic reaction in individuals with AGS.108

Although basophils are not expected to remain in the skin
long after a tick exposure, this finding of ‘‘recall urticaria’’ sug-
gests the presence of long-lived mast cells with specific IgE on
them which had accumulated at the site of a prior bite.

The role of B cells in the AGS is another area that would benefit
from further research. It has long been appreciated that ‘‘natural’’
anti–a-Gal antibodies of the IgM, IgG, and IgA isotype are abundant
in immunocompetent humans.109-112 In fact, Galili14 has estimated
that up to approximately 1%of the IgG repertoire (andB cells in cir-
culation) was specific for a-Gal. The source of a-Gal–specific nat-
ural antibodies in mouse models has been reported to be B-1b B
cells, although in humans the lineage of the B cell is less clear.113,114

An interesting possibility, and one that could distinguish the allergic
response to a-Gal from the response to traditional environmental
allergens, is that induction of a-Gal IgE could involve class switch
of existing memory B cells rather than a de novo humoral immune
response. It is anticipated that advanced tools such as polychromatic
flow cytometry and deep sequencing of antibody VDJ will provide
useful insights into this question.

Another question is whether the IgE response to a-Gal requires
T-cell help, or whether the class switch occurs independent of T
cells.115 Because the a-Gal epitope is a nonzwitterion carbohy-
drate, it is unlikely that it can directly participate in MHC II prim-
ing of CD4 T cells. Nonetheless, there are reports from animal
models that suggest that antibody responses to a-Gal depend on
CD41 T-cell help.116,117 This is in keeping with the fact that the
immune response to a-Gal that occurs in subjects with mamma-
lian meat allergy has some TH2-related features in addition to
IgE class switch. For example, IgG1 specific to a-Gal is consis-
tently elevated in subjects with AGS. IgG4 specific to a-Gal has
not been consistently reported, but this could relate to the fact
that the exposure that causes a-Gal sensitization (ie, tick bites)
is usually an intermittent and not a chronic event.118-121 Marianne
van Hage presented evidence that dendritic cell processing and
presentation of a-Gal–bearing glycoproteins was delayed
compared with nonglycosylated proteins in an in vitro model, a
finding that could also have implications for T-cell activation.122

An interesting possibility is that the glycolipid form of a-Gal
could be present in ticks and be recognized as an antigen by non-
canonical T cells, such as natural killer T cells. There is evidence
that a-Gal–bearing lipids can be presented by CD1d on antigen-
presenting cells, that blockade of CD1d impairs anti–a-Gal
antibody formation, and that invariant natural killer T cells are
present in higher numbers in subjects with AGS than in healthy
controls.123-125

An additional area of interest that is relevant to understanding
the host response relates to the observation that subjects who have
ABO blood group B (ie, have B or AB blood) may be partially
protected from developing the syndrome.39,99,120,126 This is likely
explained by mechanisms governing tolerance: (1) the B antigen
and a-Gal are structurally similar (see Fig 1), (2) subjects with
A and O blood groups have antibodies that recognize both the
B antigen and a-Gal, and (3) subjects with group B blood have
lower titers of antibodies that recognize a-Gal than subjects
with group A or O blood.39,120,127
WORKSHOP RECOMMENDATIONS
It has now been 10 years since the initial publications

describing the oligosaccharide a-Gal as an IgE-binding epitope
and a causal antigen in anaphylaxis to mammalian products.1,3

The ‘‘AGS’’ can involve immediate reactions to drugs that are
delivered intravascularly, but characteristically manifests with a
delay of 3 to 6 hours upon oral ingestion of mammalian products
such as meat, organs, and/or dairy.128 Anti–a-Gal IgM, IgG, and
IgA, which arguably represent natural antibodies, are produced
by all immunocompetent humans, but it is increasingly clear
that bites from certain species of hard ticks are the dominant cause
of IgE sensitization to a-Gal. The National Institute of Allergy
and Infectious Diseases Workshop on Understanding IgE-
Mediated Mammalian Meat Allergy recommends that future
research focuses on the following topics:

d Epidemiologic and observational research to

B determine the prevalence of a-Gal IgE sensitization

in the general population and its association with
(1) mammalian meat allergy, (2) other allergic reac-
tions (eg, vaccine reactions), and (3) other medical
conditions (eg, atherosclerotic disease),

B confirm the association between a-Gal IgE sensitiza-
tion and tick bites and identify specific tick species
that can induce sensitization and environmental con-
ditions that modify the sensitization process, and

B describe the natural history of a-Gal IgE sensitiza-
tion and determine whether early symptomatology
can be identified that develops over time into more
severe, anaphylactic reactions.
d Pathophysiologic research using human samples and ani-
mal models to
B understand the mechanism(s) of the delayed allergic
reactions to a-Gal and the factors that modify the
time interval between oral ingestion and reaction,

B determine the nature of the host immune response
that contributes to the induction of a-Gal–specific
IgE,

B identify the source of the a-Gal in tick saliva,
B identify possible contributions of other tick-

associated factors that may act as type 2 adjuvants,
and

B investigate efficacy of biologics in mouse models.
Although there are many ways that a-Gal could be considered
to ‘‘break the rules,’’ investigation into this unusual allergen is
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likely to reveal novel insights into the causes and consequences of
all allergic diseases. It is hoped that these proceedings can be used
as a guide for research proposals that will move this field forward.
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