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Cities worldwide face mounting challenges, including rapid 
and unplanned growth, human migration and climate 
change impacts1. Coinciding with this is the widespread bur-

den of mosquito-borne diseases2,3. Mosquito species of the genera 
Aedes, Anopheles and Culex spread diseases including dengue fever, 
malaria and West Nile virus. In particular, half of the global popula-
tion lives in areas where Aedes species vectors are present, and that 
are environmentally suitable for Aedes-borne virus transmission4,5. 
In this Perspective, we emphasize the unique interactions between 
Aedes species mosquitoes, Aedes-borne viruses (for example, den-
gue, Zika and chikungunya viruses) and urban environments.  
A. aegypti and A. albopictus mosquitoes preferentially feed on 
humans as a source of blood meal and lay their eggs in water con-
tainers found throughout human-dominated landscapes6. With this 
biological connection to human hosts and the built environment, 
changes to the biophysical and human social conditions of cities 
affect Aedes species ecology and Aedes-borne virus transmission7,8. 
Given the resource-intensive nature of vector management and lim-
ited medical countermeasures, such as widely available vaccines,  
cities must optimize existing interventions (for example, the indoor 
spraying of adult mosquitoes) while efficiently scaling-up others 
(for example, urban improvement initiatives such as piped water 
provision, which minimizes larval habitat)9–14. Doing so, amid the 
dynamic conditions of growing cities, requires consideration of 
the ecology and epidemiology (hereafter, eco-epidemiology) of 
Aedes-borne diseases in the broader context of urban systems.

Researchers have generated substantial knowledge around why 
Aedes-borne diseases pose a threat to urban ecosystems broadly, as 
well as the distinct challenges that regions around the world face. 
Urban areas have less biodiversity compared with surrounding 
ecosystems, as well as high human population densities and micro-
climates that are well suited for mosquito and viral development; 
therefore, Aedes species exploit landscapes with few predator species, 
abundant hosts and environmental conditions conducive to popula-
tion growth15–19. For resource-limited cities with high rates of infor-
mal development, population growth often exceeds infrastructure 
provisioning20. This leads to strained capacity to equitably provide 
public services and, for cities in tropical and sub-tropical regions with 
established Aedes species populations and circulating Aedes-borne 
viruses, ultimately increases disease risk11,21,22. For cities at the limits 
of Aedes species distributions, repeat mosquito introduction events 
through travel and trade, in addition to warming temperatures, 
accelerate population establishment (as documented for A. aegypti 
and A. albopictus in Argentina and A. albopictus and A. japonicus in 
the United States and Europe)23–25. Simultaneously, some cities in the 
United States and Europe are de-urbanizing and experiencing infra-
structure disinvestment, thereby increasing larval habitat density26,27. 
Finally, human movement (across regional and global inter-urban 
networks) circulates viruses across the cities that people visit28.

Research has also delved into varied patterns of mosquito abun-
dance, transmission potential and disease vulnerability within cities. 
Heterogeneous ambient temperatures, resulting from a patchwork 
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of vegetation and built infrastructure, affect vector and virus traits 
(for example, juvenile development and virus replication)15,29,30. 
Additionally, biophysical features such as storm drains collect rain-
water and harbour Aedes species31–34. Investigations have uncovered 
interactions between piped water access, water storage and larval 
habitat and the role of super-producer households in dynamically 
determining block-level mosquito abundance7,8,35. Given the limited  
flight range of Aedes species (averaging = 50–250 m; maximum =  
~1 km), researchers have also linked human movement (ranging  
from seasonal labour migration to inter-household visits) to Aedes- 
borne virus introduction and persistence in pockets of a city28,36–38.

Applied Aedes-borne disease research is guided by eco-bio-social 
principles39. Yet, despite considering interconnected processes that 
contribute to risk, counterintuitive relationships continue to emerge 
from empirical data. Investigations have found that employment of 
the head of a household is a risk factor for dengue infections, when 
employment is generally associated with higher socio-economic sta-
tus and lower arboviral risk40–42. Others have seen positive associa-
tions between household air conditioning and A. aegypti presence, 
and increased infection risk in neighbourhoods with lower than aver-
age nighttime temperatures41,43. Most elusive of all is a clear relation-
ship between entomological indices, Aedes-borne virus transmission 
and disease incidence44,45. Some investigations report no association 
between Aedes species infestation and incidence, while others show 
positive associations46–48. In hypothesizing why on-the-ground data 
do not support anticipated findings, researchers contemplate risk 
factors omitted from investigations, nonlinear dynamics, scale incon-
gruence or study design limitations40,41,49. Given these paradoxical  
results, we propose that Aedes-borne disease research would benefit 
from a framework wherein hard-to-explain patterns are expected of 
the system, with explicit consideration of urban complexities50,51.

In this Perspective, we build an urban systems framework that 
complements and expands on existing empirical and theoretical 
approaches to Aedes-borne diseases. We bridge theories from the 
study of cities as complex adaptive systems (CAS), landscape ecol-
ogy and urban geography to demonstrate how Aedes-borne dis-
eases can be conceptualized as an emergent property of an urban 
system. We emphasize that nuanced examinations of cross-scale 
and dynamic urban processes will provide greater insight into 
Aedes-borne disease transmission, but require the co-production 
of knowledge with diverse human social actors (from community 
members to municipal institutions). This framework, developed 
alongside urban scientists, generates new lines of research and cre-
ates an essential pathway for mosquito-borne disease interventions 
to be integrated into initiatives that set cities on more healthy and 
sustainable trajectories52–54.

Why we need an urban systems framework
Increasingly, research communities and health ministries are 
recognizing shared priorities between vector-borne disease and 
urban health initiatives and are calling for integrated vector man-
agement plans spanning departments of urban planning, water 
and sanitation11,55. However, in academic spheres, there is limited 
knowledge sharing across vector-borne disease and urban devel-
opment disciplines, and in the public sector there is limited guid-
ance on best practices for inter-sectoral decision-making. In the 
eco-epidemiological literature, urbanization is cited as a principal 
driver of Aedes-borne disease; however, urbanization itself is often 
quantified as the dichotomous conversion of rural to urban land 
cover or change in continuous variables such as population den-
sity56. There is a need for examinations of urbanization that inte-
grate social science approaches and evaluate the role of the technical 
dimensions of a city (for example, technology and communications) 
in Aedes-borne outbreaks52,57,58. For public health interventions, it is 
well established that policy changes in cities have far-ranging, often 
unintended consequences59. Therefore, there is an imperative to 

enhance our knowledge of arboviral risk amid complex urban envi-
ronments, particularly as localities implement costly vector control 
strategies (for example, Wolbachia-infected mosquito releases) or 
large-scale urban development interventions (for example, piped 
water provisioning).

In the urban sciences (here, the fields of urban geography, 
urban ecology, sustainability and urbanization science), cities are 
composed of countless individual-level processes interacting with 
broader social and technical structures and the biophysical environ-
ment60–62. Sub-fields study these complexities to inform environ-
mental policy, disaster preparedness and land management52,63–66. 
Public health applications have explored human–environmental 
interactions associated with chronic diseases, contaminant expo-
sures and health inequities67–70. However, few studies explore how 
urban structure and function contribute to vector or pathogen 
introduction and maintenance. Here, we build a framework for 
understanding Aedes-borne diseases in contemporary cities using 
three intersecting concepts: cities as CAS, hierarchical patch sys-
tems dynamics and relational geography.

Cities as complex adaptive systems. Disease incidence patterns are 
generated from co-occurring, interacting processes across multiple 
scales of the urban system71. Embedded in these interactions are attri-
butes of CAS that explain how patterns emerge across higher scales, 
including self-organizing building blocks, interconnectedness and 
modularity, cross-scale interactions and dynamical processes72–76.

Using the building blocks approach, a city comprises indepen-
dent spatial cells that self-organize into patches, creating the fab-
ric of the landscape76. Cells aggregate in different combinations, 
creating novel patches. Emergent systems’ behaviours are gener-
ated through self-organization, whereby patches have properties 
that cannot be predicted from the properties of individual cells. 
Complexity increases not with the land area of the cells but with 
increasingly heterogeneous aggregation and divergent processes 
over time73. Human populations, too, are aggregated from building 
blocks, where individual social actors create socio-cultural groups 
(for example, households) and institutions77,78.

Urban systems are characterized by their degree of interconnect-
edness and modularity. Complexity increases with interconnected-
ness, characterized by abundant and far-ranging linkages within the 
system54,76. In contrast, modularity describes the degree to which the 
components of a system separate and recombine76. While intercon-
nectivity enables the flow of organisms and information across the 
spatial extent of the city and between social actors, it facilitates the 
spread of disturbances such as invasive species or cascading impacts 
of policy decisions67. Modularity decentralizes structure and func-
tion—for example, maintaining strong internal ties between nearby 
patches but weaker external connections between distant patches79.

Processes in these patchy environments operate on a continuum 
of scales—from micro to macro scales80. Temporal processes, for 
example, separate into fast variables measured on short timescales 
and slow ones that are prolonged and tend to control fast variable 
dynamics81,82. Macro-scale processes (for example, climate) contex-
tualize and set constraints on micro-scale dynamics. In contrast, 
micro-scale processes may be reinforced, generating positive feed-
backs up to a given threshold83,84. Beyond this threshold, new pro-
cesses and feedbacks are triggered, producing nonlinearities and 
emergent properties. Nonlinearities also emerge when macro-scale 
processes overwhelm micro ones82. Cross-scale interactions occur 
when interactions between macro- and micro-scale processes affect 
a response variable; for example, when broad-scale drivers affect the 
degree to which a local driver influences a response83,85. Additionally, 
macro- and micro-scale interactions may produce a response, with 
feedbacks that affect the cross-scale interaction itself85. Extreme het-
erogeneity in land use and social actors contributes to pronounced 
cross-scale interactions in urban settings80.
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Finally, cities are adaptive. All dimensions of the system change 
over time in response to external conditions, internal drivers and 
feedbacks. Embedded in this concept is that CAS have memory, 
in which past processes and events influence current and future 
conditions75. Examining this historical record—at the relevant 
scale—provides an essential baseline for understanding how given 
processes might behave in the future.

Hierarchical patch systems theory. To bridge cities as CAS with 
a spatially explicit understanding of disease, we use hierarchical 
patch dynamics from landscape ecology86,87. A landscape is made 
of patches that differ from their surroundings based on their com-
position. Importantly, patch size depends on the ecological process 
of interest, as the degree of spatial variation changes with scale88. 
Patches are spatially arranged in many ways and organized as nested 
spatial hierarchies. Information, materials and organisms flow in and 
out of patches over time, synergistically defining their levels of con-
nectivity to determine the functioning of each patch and landscape 
as a whole89. Additionally, landscapes change over time (through 
transformations in spatial structure or via disturbance events), 
reciprocally effecting urban systems processes84. The patch systems 
framework has been applied to animal movement and green space 
management and is used in emerging urban ecology theory86,90,91. For 
cities, groupings of similar houses, city blocks or neighbourhoods  

are considered nested patches86. Therefore, the framework allows 
urban heterogeneities to be broken down and examined as the 
product of many nested structure–function relationships.

Relational perspectives on human social interactions. To examine 
urban social dynamics, we draw on relational geography—empha-
sizing that entities mature based on their relationship with other enti-
ties in processes of 'mutual becoming'92. Structuration theory from 
social geography describes how individual agency reinforces social 
structures through rules, laws and social norms93,94. Individuals are 
also responsive, using information to change their behaviour or 
alter the social structures that they are embedded within. This rela-
tional ontology helps us to understand how individuals mutually 
develop alongside other individuals, group-level social actors and 
the landscape. Rather than dichotomizing social and ecological pro-
cesses, relational thinking acknowledges that processes are inextri-
cably social and ecological at the same time95. When examining the 
dynamics between spatial organization and human activity, proper-
ties of a given patch may constrain or enable social actors’ actions, 
tendencies (propensities for certain actions) and capacities (poten-
tial for future actions)—establishing path-dependent trajectories96. 
Therefore, areas of a city built during the same period with com-
parable social and biophysical features promote similar behaviour 
among people97. Reciprocally, individual- and group-level actors 
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Fig. 1 | Interactive properties of the urban system determine Aedes-borne disease risk. a, Gridded cells form the building blocks of the urban landscape. 
These gridded cells aggregate to form homogeneous urban patches. b, Each spatial unit (whether a cell or patch) and the urban system itself has four sets 
of properties: biophysical, socio-economic, cultural and institutional. Biophysical properties include building design and structure (depicted in the circular 
icon); socio-economic properties include the age structure of family units; cultural properties include social cohesion or a sense of community belonging; 
and institutional properties include public services such as piped water access. These four properties interact to determine the hazard of infected Aedes 
species, human exposure to infected mosquitoes and disease vulnerability (the population’s capacity to respond to disease). Hazard, exposure and 
vulnerability together determine the level of Aedes-borne disease risk for a given spatial unit.
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influence the landscape at cell or patch levels. As these reciprocal 
processes accumulate, trajectories diverge, building heterogeneity 
and complexity over time. These theories are the foundation for our 
approach, aiding our understanding of dynamic systems processes, 
heterogeneities in risk and human–landscape interactions driving 
Aedes-borne disease.

An urban systems approach to Aedes-borne disease
Landscapes of heterogeneous risk and transmission. To under-
stand landscapes of Aedes-borne disease risk, we start with 
self-organizing gridded cells as building blocks, which aggregate to 
urban patches (Fig. 1a)98. The spatial extents of cells and patches 
vary based on the research question89. For example, an investigation 
examining threshold Aedes species population sizes necessary to 
maintain virus circulation may define gridded cells at a block scale 
and patches at a neighbourhood scale, given Aedes species’ limited 

flight range99,100. However, if the question asks how Aedes-borne 
viruses circulate regionally based on seasonal human migration, 
cell-level processes may not be relevant and patches can be defined 
at the city scale28,101. This section considers how cells and patches 
are characterized, aggregated and interconnected to determine risk 
and transmission.

Landscape composition. In landscape ecology, composition denotes 
the spatial properties important for a landscape function102. Here, we 
describe the properties important for Aedes-borne disease risk. Risk 
is an integrated measure of the hazard (that is, mosquito abundance 
and infection), human exposure to infected mosquitoes, and vulner-
ability (the capacity to respond to disease) (Fig. 1b)103. We classify 
the spatial properties as biophysical, socio-economic, institutional 
and cultural using relational geography to understand how the char-
acteristics of each cell are uniquely co-determined (Fig. 2a)86.
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Fig. 2 | Landscape composition, configuration and connectivity determine risk and transmission. a, The composition of each gridded cell is defined 
by four interacting properties: biophysical, socio-economic, cultural and institutional. b, Gridded cells are arranged in different configurations to create 
homogeneous urban patches (as shown by the black dashed lines). Individuals move across urban patches (red arrows) with different patterns of flow, 
determining levels of connectivity between urban patches and driving transmission between connected patches. c, The composition of each gridded 
cell determines the localized level of Aedes-borne disease risk through biological, ecological and human behavioural processes, and the configuration 
of gridded cells determines the level of risk generated for aggregated areas (for example, neighbourhood blocks). Here, the brown gridded cell in the 
foreground shows interacting properties resulting in high Aedes species production. When the brown cells are configured together in space (in the 
background), this results in areas with high aggregate mosquito abundance.
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Box 1 | Human social actors of the urban system

We build complexity onto the urban landscape by considering 
human actors at multiple levels of social organization and un-
covering ways in which people are characterized, aggregated and 
interconnected (Box 1 Fig. a). Individual human actors are char-
acterized by demographics, epidemiological roles (for example, 
infection status) and agency (for example, beliefs, desires and 
intentions)250,251. Group-level socio-cultural actors (for example, 
families, social networks and community boards) are made up of 
individuals who share characteristics but have their own proper-
ties as a collective252,253. Individual-based and group-level influenc-
es drive people to interact with their landscape based on values, 
beliefs and norms. Water storage in the household, for example, 
is a behaviour based on cognitive decision-making, attitudes and 

norms254. Previous work has connected the perceived quality of 
peri-domestic space with attitudes towards vector control activi-
ties255. For example, focus groups among community members 
in multiple Latin American countries have suggested that clean 
spaces in high-income neighbourhoods contribute to perceptions 
that regimented mosquito control is unnecessary while living in 
neglected areas makes mosquito control seem futile121,256. Here, 
neighbourhood-level social class reinforces perceptions and be-
havioural patterns. Institutional actors are at the highest level of 
social organization and include local governance structures such 
as housing authorities, as well as agencies managing water, waste 
and sanitation and health (depicted by the four interconnected 
icons). Their interconnectedness (depicted by arrows between 
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Biophysical properties such as building design and microclimate 
affect temperature and humidity-dependent viral traits, mosquito 
biological and behavioural traits as well as vector–pathogen inter-
actions15,29,30,104–108. Vegetation provides resting habitat and sugar 
meals for mosquitoes, highlighting fine-scale drivers of mosquito 
abundance and mosquito–human contact109,110. An area’s bio-
physical properties are determined by underlying socio-economic 
factors111–114. Socio-economic properties also drive the quality 
of institutional services, such as water and waste management. 
Inconsistency in public services affects cultural properties, such as 
water storage behaviour and trust in institutions, thereby increasing 
disease hazard and vulnerability35,115. Finally, water and waste man-
agement services impact vulnerability, given the association between 
unsafe sanitation conditions and population health outcomes116.

Cultural properties, including risk perception, protec-
tive behaviours and social cohesion, both determine and rein-
force socio-economic, institutional and biophysical properties. 
Education, wealth and self-efficacy contribute to varied knowl-
edge and attitudes regarding household water container manage-
ment35,117. For neighbourhood-level risk, social cohesion or a sense 
of community belonging drive risk via dual effects on pathogen 
exposure and disease vulnerability118. On the one hand, neighbour-
hoods with high social cohesion may have high inter-household 
movement, with greater virus exposure119. On the other hand, social 
cohesion is protective, with communities better equipped to advo-
cate for services with local goverance120–122. Determining which 
aspects of composition drive disease risk at a particular scale can 
inform scale-dependent management strategies.

Landscape configuration. While composition establishes localized 
levels of disease risk, configuration determines emergent patterns 
of risk at patch and landscape levels. Here, configuration describes 
the spatial layout and structure of the built environment (Fig. 2b)123. 
At city scales, configuration is driven by top-down restrictions on 
expansion and bottom-up urban growth processes. For example, 
configuration is limited by topographical constraints that have 
prohibitive construction costs (for example, sloped terrain), creat-
ing asymmetries in the land available for formal development124,125. 
Zoning regulations, green space protection and land tenure add 
additional restrictions to landscape configuration126–128. Patches of 
varying composition are arranged in unique ways, and patterns 
and processes emerge concerning the biophysical environment, 
demographics and human–landscape interactions, all with cas-

cading impacts on Aedes-borne disease risk (Fig. 2c). Aggregated 
cells with varied building densities and impervious land cover 
have consequences for mosquito dispersal via physical obstruction, 
temperature and wind flow, with landscape genetics studies dem-
onstrating that, over time, the built environment structures Aedes 
species populations36,114,129–131. Additionally, depending on cell-level 
configuration, human populations are spatially dispersed at dif-
ferent densities132,133. While human population density variation is 
known to drive differences in larval habitat density via water storage 
practices, empirical evidence regarding host density effects on vec-
tor processes (for example, host-seeking behaviour) requires further 
investigation7,133,134.

Regarding human–landscape interactions, compact forms and 
high building densities may positively affect public transit and 
walking, affecting mosquito exposure and mixing rates between 
infected and susceptible individuals135. Additionally, as green infra-
structure is promoted in vertically growing cities, vegetation may 
provide thermal refugia for vectors30,136. Configurational changes 
also affect disease hazards by creating novel habitat and shifting 
mosquito community structure18,71,137. For example, in Brazil, large 
urban centres such as São Paulo are surrounded by tropical rain-
forest, where sylvatic cycles of yellow fever virus are maintained 
between non-human primates and tree-dwelling mosquitoes138,139. 
Spillover into urban transmission cycles is heightened at urban–
wildland interfaces, with A. albopictus colonizing the edge of forest 
fragments, and high densities of A. aegypti in built environments 
neighbouring forests44,138,140.

Configuration is co-determined alongside socio-economic, cul-
tural and institutional processes. Recent expansion of unplanned 
informal housing, for instance, may inspire future rural-to-urban 
migration. Additionally, adjacent high and low socio-economic 
status patches may further marginalize low socio-economic status 
patches141,142. Uncovering mechanisms by which landscape con-
figuration affects Aedes species hazard and exposure is essential to 
understanding how urbanization alters the spatial epidemiology of 
Aedes-borne diseases137.

Landscape connectivity. Using metapopulation ecology, connec-
tivity determines how pathogens and susceptible individuals are 
distributed across patches. While configuration remains relatively 
unexplored for Aedes-borne diseases, connectivity-driven pathogen 
spread is well established21,111. Transmission foci of dengue virus 
are connected by commuter patterns, long-distance transport and 

the icons) comes from cross-agency interactions (for example, a 
shared political agenda or household water access coordinated by 
both housing and water authorities).

Over time, through relational processes, human social actors 
(including individual actors, socio-cultural group actors and 
institutions) mutually develop alongside one another and their 
landscape (Box 1 Fig. b). At the base of the figure is the urban 
landscape (shown as a mosaic of gridded cells) organized into 
administrative units (neighbourhoods). Neighbourhoods may 
have gridded cells with uniform composition (for example, 
neighbourhood A) or of varied composition containing 
sub-neighbourhood-level homogeneous urban patches 
(neighbourhood B). Sitting above the urban landscape are 
individual human actors who interact with the landscape 
directly through behaviours such as household property 
management. Individual actors may self-organize into social 
network structures that include people from one spatially defined 
neighbourhood (type 1 individuals) or multiple neighbourhoods 
(type 2 individuals). Group-level actors exert their influence on 

individuals through formal mechanisms (for example, ordinances) 
and informal mechanisms via norms and collective emotion58. 
They also exert influence on institutional actors through 
advocacy or lobbying, which influences governance decisions. 
The strength of their influence depends on characteristics of the 
group (for example, social class and numbers of years established). 
Finally, institutions such as health departments are made up of 
individual representative actors (for example, community health 
workers)257,258. Institutions collect field-based data at discrete times 
and locations (for example, resident complaints of mosquitoes) and 
monitor conditions over time (for example, vector surveillance). 
They receive information through interactions with socio-cultural 
actors (for example, businesses and lobbying groups) and stimulate 
changes to the landscape and lower-level actors via information, 
public services, policy and land management259,260. While 
individual and household-level effects are well documented in the 
Aedes-borne disease literature, there is a need for more nuanced 
understanding of the role of socio-cultural actors and institutions 
in driving processes.

Box 1 | Human social actors of the urban system (continued)
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Box 2 | Work flow: implementing the urban systems framework

Here, we build a work flow, showing how landscape analyses, 
socio-behavioural research and mixed qualitative–quantitative 
modelling can be used to implement an urban systems framework. 
Beginning with open-source datasets, remotely sensed informa-
tion on elevation, building and population density, vegetation and 
road networks are a useful starting point when characterizing the 
biophysical and socio-economic properties of the urban system. 
Urban scientists often use principal components and hierarchi-
cal cluster analyses to characterize the variation across the urban 
landscape and define homogeneous landscape composition types 
(that is, typologies) for a city181,261. These a priori typologies can 
be defined for 100–250 m2 gridded cells and may help researchers 
to develop stratified sampling strategies for Aedes-borne disease 
fieldwork (for example, entomological data collection, microcli-
mate measurements, genetic data collection, social surveys and 
interviews), incorporating cities’ biophysical and socio-economic 
variation, with research teams aiming to recruit a certain number 
of households per given typology178. Over time, field data can be 
used to generate information on cultural and institutional proper-
ties of the urban system and to validate or redefine gridded typol-
ogy assignments.

With remote sensing data, tools such as FRAGSTATS or 
connectivity models can also be used to characterize patch-level 
configuration and urban form262. Distance-based configuration 
variables (for example, the distance to transportation hubs, 
crowd-gathering centres or hospitals) may also be relevant for 

disease risk144,178. Mobile phone data, mobility models and/or travel 
surveys may be used to determine within- and between-patch 
population movement (that is, connectivity)263. Additionally, at 
this stage, collaborations with urban geographers and historians 
may provide insight into areas of a city that were built at the 
same time and therefore share similar development trajectories 
and infrastructural vulnerabilities. With relevant empirical data, 
landscape composition, configuration and connectivity can be 
iteratively defined to reflect the hypothesized risk landscape for 
Aedes-borne disease.

Combined with high-resolution data on disease incidence or  
entomological indices, researchers may begin to explore the asso
ciations between gridded typologies and disease or entomological 
risk. For example Telle et al.178 used logistic regressions to assess  
the association between a given gridded typology and the 
probability of a dengue index case (that is, one of the first  
50 reported cases in a year) detected in a given administrative 
unit. More complex modelling approaches, including agent-based 
models (ABMs), can integrate socio-behavioural and participatory 
research into spatially explicit investigations of risk. Social  
and behavioural scientists may gather information on indivi
dual, group-level and institutional actors to understand social 
hierarchies, within-household decision-making and interactions 
with the urban landscape that drive Aedes-borne disease risk253. 
For example, ABMs exploring the effects of water storage on Aedes 
species populations may build sub-models that incorporate the 
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social networks101,112–114. Movement patterns are determined by land-
scape configuration, land use and the spatiality of social structures. 
However, there is the potential to examine which movement pat-
terns and processes are relevant at different spatio-temporal scales. 
At the city scale, a settlement may have a central urban core that 
promotes movement from all surrounding patches into a central 
patch—exhibiting high interconnectedness143. However, zooming 
out to an entire metropolitan area may reveal separate and distinct 
movement patterns among different patches of the system—dem-
onstrating modularity. At sub-city scales, residence-based health-
care facilities, schools and places of worship may promote modular 
movement patterns as opposed to in cities where individuals and 
families commute across town for these sites.

Finally, feedbacks between landscape connectivity and compo-
sition are described, with higher Aedes species larval indices near 
crowd-gathering locations (for example, schools and cinemas)144. 
This may be due to biophysical or cultural properties associated 
with crowd-gathering spaces (for example, container accumulation) 
that promote larval habitat. Further explicating links between land-
scape connectivity and composition and configuration may provide 
insight into positive feedback loops that create spatio-temporal 
hotspots of Aedes-borne disease.

Cross-scale and dynamic urban processes. Patch system 
approaches provide a framework for spatially structured processes; 
however, cross-scale and dynamical interactions also contribute to 
urban complexities. This is particularly true given the high degree 
of diversity of human social actors, compositional and configura-
tional heterogeneity and the high rate of change in cities80. Social 
dynamics, for example, can be examined as cross-scale interactions 
between hierarchical levels of social organization—between indi-
vidual human actors, socio-cultural group actors and institutional 
actors (Box 1). Additionally, in Aedes-borne disease research, sci-
entists often ask what the most appropriate scale for associating 
mosquito abundance with human infection is145,146. Few studies 
acknowledge that spatial cross-scale interactions are inherent to 
this relationship and that the relevant scale varies based on urban 
context147. For instance, a neighbourhood’s socio-economic and 
biophysical properties affect household-level mosquito exposure, as 
physical infrastructure determines Aedes species’ flight range and 
penetration into buildings148–151. In low-income settings, houses may 
be built close together, with shared walls or incomplete construc-
tion152. This promotes human population mixing and outdoor–
indoor and house-to-house mosquito movement, calling for block 
or neighbourhood scale analyses153. However, in higher-income 
areas with larger, separated dwelling units and less population mix-
ing, it may be more relevant to study associations between mosquito 
abundance and infection risk at the household scale. Insight into the 
spatial scales at which socio-economic and biophysical properties 
constrain eco-epidemiological processes carries implications for 
the unit at which vector control should be implemented, with the 
potential for differences across neighbourhoods.

Alongside recognition of spatial cross-scale effects are clear 
indications that patch conditions are dynamic. However, defining 

relevant fast and slow variables, and understanding how they con-
verge to drive disease outbreaks, requires further investigation154–156. 
Temporal heterogeneities arise from biological variation in viral 
mutation rates, serotype introductions and circulation, evolution-
ary adaptations and mosquito population dynamics, which have 
simultaneous long-term trends punctuated by changes of rapid 
ones157. Additionally, weather and climate effects vary over times-
cales, from diurnal to decadal and beyond. Social and behavioural 
phenomena, too, occur over a range of fast and slow scales, includ-
ing hourly changes in socio-economic activities, information dis-
semination over news cycles and generational shifts in cultural 
values. Examining how information is stored and carried through 
time provides a pathway for understanding temporal cross-scale 
interactions52.

Memory is a key temporal feature of Aedes-borne diseases, as 
previous events affect current and future processes. Biological 
memory is familiar to eco-epidemiologists. For example, dengue 
virus homotypic neutralizing antibodies may remain detectable 
decades after an initial serotype infection158. Additionally, ambient 
temperature has carry-over effects on vector traits as mosquito lar-
vae develop into adults159–162. Memory also captures how individuals 
with previous infections may acquire more knowledge of the disease 
compared with naive individuals163,164. Other aspects of memory are 
less often integrated. Present day land use depends on a city’s his-
tory, socio-cultural values and socio-economic processes165–167. The 
built environment also carries memory, as repeat extreme rainfall 
events deteriorate infrastructure, increasing the standing water 
available to ovipositing Aedes species168.

Individual behaviours result from previous places of residence 
and adjust with changes in neighbourhood biophysical and cultural 
composition (due to human migration, government intervention 
and so on). Additionally, societal memory of piped water interrup-
tions contributes to water storage practices well after reliable water 
distribution systems have been implemented169. The influence of 
previous events may not prompt permanent change, and a return 
to baseline may be quite sudden. Innovative methods of measur-
ing cross-scale interactions and memory are essential to advancing 
Aedes-borne disease research, particularly as interventions consider 
interactions operating on a range of timescales170.

Applying the urban systems approach
Global examples of the urban systems approach. While cities face 
similar challenges in controlling Aedes-borne diseases, they also 
have unique climates, histories and urbanization trends. Here, we 
highlight aspects of the urban systems framework that are already 
being used to study Aedes-borne disease within diverse urban set-
tings—grounding our approach in relevant research practices. We 
emphasize the potential to expand on this work by asking research 
questions guided by relevant urban systems concepts across mul-
tiple spatial scales.

For example, in Machala, Ecuador—a port city in southern 
Ecuador (population 280,000)—vector control operations are man-
aged out of two centrally located hubs in the city171,172. Lippi et al.171 
conducted a city-scale network analysis and determined that vector 

interactions between city-level water distribution systems and 
household-level management practices, in addition to studying the 
effects of household-level water management on larval recruitment 
rates. Focus groups with role-playing exercises can reveal 
individual-level behaviours and feedbacks triggered by certain 
interventions, and can provide insight into how slow versus fast 
variables drive decision-making264. Finally, ABMs can be used to 
develop complementary bottom-up and top-down interventions 

that consider cross-scale interactions, dynamic urban system 
properties and interactions between individual, socio-cultural 
group-level and institutional actors. With inter-sectoral teams, 
cities have the opportunity to build patch-level management 
strategies using interventions (for example, indoor residual 
spraying, larvicides, educational campaigns or infrastructure 
improvement) best suited to the needs and cultural conditions of 
each patch.

Box 2 | Work flow: implementing the urban systems framework (continued)
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Table 1 | Modelling approaches to Aedes-borne disease transmission in an urban systems framework

Model class Key attributes Urban systems concepts Urban systems applications

Complex 
adaptive 
systems

Hierarchical 
patch systems

Relational social 
interactions

Hierarchical 
regression
models

• Generalized linear mixed 
models and generalized additive 
mixed models
• Spatially structured 
random effects account for 
heterogeneities across locations
• Incorporate lagged, nonlinear 
structures and temporal dynamics
• Bayesian frameworks 
incorporate variance components 
in a hierarchical manner and 
estimate predictive uncertainty

• Building 
blocks (that 
is, hierarchical 
structures)
• Lagged effects
• Nonlinear 
interactions
• Cross-scale 
interactions

• Hierarchical 
landscape
• Composition
• Configuration
• Connectivity

• Knowledge, 
attitudes and 
practices
• Lagged social/
historical factors

• Evaluate the lagged and nonlinear 
effects of weather and piped water 
availability on the relative risk of 
disease161,229

• Assess cross-scale interactions 
driving Aedes species movement 
(influenced by the El Niño Southern 
Oscillation (slow variable and 
decadal scale) and weather (fast 
variable))230,231

• Examine water storage practices 
based on current knowledge and 
attitudes, as well as historical 
institutional experiences115

Metapopulation 
models

• Populations are distributed over 
patches connected by human 
movement232

• Parameterized connectivity 
between sub-populations
• Homogeneous mixing within 
patches
• Space between patches is 
modelled discretely
• Dynamics are affected by 
demographic and environmental 
stochasticity, both for each local 
sub-population and the global 
population233

• Hierarchical 
structures
• Emergent 
properties
• Stochasticity
• Feedbacks

• Hierarchical 
landscape
• Composition
• Connectivity

• Spatial 
autocorrelation 
(proxy for 
relational 
feedbacks)

• Assess whether interventions (for 
example, vector control) should be 
applied differentially to patches with 
high- or low-risk composition234

• Assess the effects of intervention 
synchronicity for neighbourhood 
patches of different sizes and levels 
of connectivity235

• Assess the likelihood of an 
outbreak based on levels of 
connectivity between a network of 
cities236

Cellular
automata

• Each discrete cell is 
characterized by a state (that is, 
binary, categorical, quantiles or 
vector of attributes)
• The current state depends on 
the previous state and the state of 
neighbouring cells, according to 
transition rules, which are either 
deterministic or stochastic
• Nonlinearity of cellular 
automata leads to fractal patterns 
(that is, regular and ordered 
spatial patterns that generate 
similar geometries at different 
scales)237

• Ideal for local conditions and 
emergent properties
• Low amounts of data needed to 
parameterize

• Building blocks
• Nonlinearity
• Emergent 
properties
• Stochasticity
• Adaptive 
memory

• Hierarchical 
landscape (grids 
and patches)
• Composition
• Configuration
• Connectivity

• Spatial 
autocorrelation 
(proxy for 
relational 
feedbacks)

• Simulate urban expansion with 
different land use types combined 
with an urban patch-growing 
algorithm237,238

• Simulate urban expansion with 
water management systems for 
each new cell (combined cellular 
automata and systems dynamics 
model)239

• Spatio-temporal spread of dengue 
across cells with diffusion-based 
human mobility240

• Evaluate outbreak persistence 
using human population size, 
vector-to-host ratio and biting rate 
across different cells241

Agent-based 
models

• Ideal for complex processes, 
feedbacks and interactions
• Individual-based traits and 
behaviour/decision rules
• Space is modelled discretely or 
continuously
• Stochastic
• Large amounts of empirical 
data required to accurately 
parameterize

• Building blocks
• Nonlinearity
• Emergent 
properties
• Stochasticity
• Adaptive 
memory

• Hierarchical 
landscape
• Composition
• Configuration
• Connectivity

• Sensing
• Adaptation
• Beliefs, desires 
and intentions
• Associations with 
hierarchical social 
groups

• Simulate urban water supply and 
effect on Aedes species populations, 
with changes due to population 
growth and weather242

• Effects of interventions (for 
example, trade policies, vaccination 
and spraying) on Aedes species and 
Aedes-borne disease incidence9,243

• Simulate spatial growth patterns of 
informal settlements, with changes 
in population density that affect 
Aedes-borne disease244

(Continued)
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control allocation could be optimized if the hub locations aligned 
with the city’s road infrastructure. This work demonstrates how 
understanding of the modularity of road infrastructure can be 
used to distribute resources to high-priority neighbourhoods as 
quickly as possible. Landscape structure was also of importance in 
Yogyakarta, Indonesia (population 375,000), although under dif-
ferent circumstances173. There, researchers used landscape genet-
ics to examine city-scale Aedes species population gene flow174. 
They found that A. aegypti from an inner-city district clustered 
with a single outer-city district, indicating interbreeding174. Other 
outer-city districts showed greater genetic isolation from inner-city 
mosquitoes, regardless of geographic distance. These results prompt 
questioning as to how patch composition, configuration and con-
nectivity may drive this structuring114,175,176. Characterizing the 
spatial structure of Aedes species populations is particularly impor-
tant for cities like Yogyakarta, where Wolbachia-infected mosquito 
releases are an emerging control strategy177. Multi-scale investi-
gations will aid in expanding these initiatives to additional cities, 
exploring questions such as ‘Which socio-economic, cultural and 
institutional properties are associated with social acceptance of 
Wolbachia-infected mosquito releases?’ and ‘Which characteristics 
of the built environment facilitate Wolbachia establishment within 
Aedes species populations in the shortest period of time?’

There has been substantial effort to characterize the extreme het-
erogeneity observed in socio-economic status, population density 
and built infrastructure within cities. Telle et al.178 used principal 
component analysis on socio-economic and population density 
variables to create eight homogeneous typologies for 10,676 grid-
ded cells (250 m2) in New Delhi, India (population ~30.3 million). 
In association with geolocated dengue cases, they found the highest 
incidence in low-income, high-density typologies179. Such methods 
offer a way for landscape composition to be operationalized and 
tested in association with Aedes-borne disease incidence. In the 
urban sciences, typology analyses provide a starting point for char-
acterizing spatial variation using remotely sensed and publicly avail-
able data when ground-based data are challenging to access180,181. 
Field surveys, interviews and molecular data can then validate or 
refine typology assignments based on cultural and institutional 
properties or functional, biological processes. In Box 2, we present a 
work flow, demonstrating how typology analyses, landscape metrics 
and population mobility can be integrated to begin implementing 
an urban systems framework.

While composition may provide an indication of high trans-
mission areas, viruses themselves exhibit fine-scale spatial struc-
turing driven by immunological dynamics. Bangkok, Thailand 
(population 10.5 million) is endemic for four dengue virus sero-
types, allowing researchers to explore antigenic evolution (muta-
tions in genes that code for the viral surface proteins recognized 
by host antibodies)182. Using serological data, Salje et al.183 found 
that immunological memory for dengue virus serotypes develops 
at sub-neighbourhood levels. Using micro-phylogeography, their 
team defined dengue virus transmission chains using sequence and 
serotype data184. They found that 60% of cases <200 m apart were 
from the same transmission chain, indicating sequential transmis-
sion between households in a neighbourhood. Further research 
may explore how sub-neighbourhood composition (for example, 
social cohesion and population density) determines the probability 
of nearby cases, or how configuration and connectivity determine 
the time to introduction between neighbourhoods with established 
transmission and naive ones.

Other urban science topics are less explored and can expand 
our insight of Aedes-borne disease in the context of contempo-
rary urbanization. Across West and Central Africa, settlements are 
growing in rural areas far from main cities in micro-urbanization 
processes185. These settlements are sparsely distributed with low 
housing density. Eco-epidemiologists can ask questions including 
‘What drives the introduction and persistence of Aedes-borne dis-
eases within networks of micro-urban settlements?’ In China, rural 
areas surrounding major cities are often either partially urbanized 
or entirely subsumed by urban sprawl38,186. These villages are geo-
graphically part of cities, but the infrastructure and residents retain 
traditional characteristics. Inter-disciplinary questions may explore 
patch-level properties (for example, biophysical or cultural proper-
ties) of urban villages that contribute to varied rates of transmission 
compared with the city average. Additionally, throughout eastern 
Asia, cities are becoming increasingly more vertical187. For exam-
ple, 79% of Singapore’s residents live in high-rise apartments188. 
Researchers may then ask ‘How do high-rise buildings drive differ-
ences in water management behaviour compared with other types 
of dwellings?’ This type of building structure also affects vector 
surveillance strategies that depend on door-to-door inspector visits. 
Researchers must explore novel sampling methods that accurately 
detect changes in Aedes species populations on a meaningful spa-
tial scale189. Finally, across many cities, governments contend with 

Model class Key attributes Urban systems concepts Urban systems applications

Complex 
adaptive 
systems

Hierarchical 
patch systems

Relational social 
interactions

Neural networks • Data-driven approach to classify 
or predict an outcome layer based 
on one or more input layers206

• Uses a feature detector (an array 
of weights) to determine whether 
a feature is present or not—a 
process known as convolution
• Image segmentation and 
classification (that is, convolution 
and pooling algorithms to identify 
key regions in an image)245

• Granular data are beneficial 
(they allow for local predictions 
and result in larger training 
datasets (more observations) than 
higher-scale aggregations)206

• Composition
• Configuration

• Detect collective 
emotion

• Classify street images to extract 
urban features that predict rates of 
disease246

• Use drone images to crowd count 
and estimate site activity at different 
times of the day247

• Analyse high-resolution satellite 
images to detect/predict changes in 
urban form208,209

• Analyse Twitter messages to 
characterize collective emotion over 
the course of an outbreak248,249

Table 1 | Modelling approaches to Aedes-borne disease transmission in an urban systems framework (continued)
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challenges in equally distributing public services. In New Delhi, 
India, 40% of households have a 24-h water supply, while more than 
25% of households have water for <4 h per day190. Therefore, it is 
essential to consider the role of institutional actors and to ask ‘Does 
water distribution drive differences in water management practices 
for different neighbourhoods?’, ‘How do water supply, distribution 
and management practices vary temporally?’ and ‘Does this affect 
local-level variation in Aedes species abundance?’

Modelling the eco-epidemiology of Aedes-borne diseases. 
Building datasets that adequately capture the above urban systems 
processes requires substantial time and resources. However, in this 
section, we begin by demonstrating that there are low-stakes ways of 
incorporating CAS, patch systems dynamics and cross-scale inter-
actions into eco-epidemiological analyses. Hierarchical regression 
models—particularly those using Bayesian approaches—accom-
modate urban system complexities including lagged effects, non-
linear interactions and multi-scaled data with variable sample sizes  
(Table 1)191. Evaluation of cross-scale interactions, however, is 
noticeably absent85,192. In the landscape ecology literature, Soranno 
et al.85 quantified cross-scale interactions between local and  
regional land use drivers of lake phosphorus using interaction 
terms between variables at different hierarchies as a straightforward  
way of examining local, regional and cross-scale dynamics. Quantile 
regressions have also been proposed to identify scale thresholds193. 
In the relationship between an outcome and predictor variable  
at multiple regression quantiles, scale thresholds are indicated 
at scales where one predictor variable is no longer essential and 
another takes over. However, if thresholds are not critical, the pre-
dictor would have the same effect size at any quantile. Quantile 
regressions have been used to study nonlinear climate and  
income effects on dengue risk. However, cross-scale applica-
tions have not been pursued, leaving room for methodological 
development194–196.

Dynamical models focus on mechanistic formulations of trans-
mission, including space–time dependencies of demographic and 
environmental processes. Metapopulation models divide a popu-
lation into spatially structured patches. Patches are assumed to be 
independent, invoking relational geography ideas of patches hav-
ing unique trajectories. Additionally, the rate at which susceptible 
individuals are infected varies based on patch composition133,197. 
While between-patch connectivity is intrinsically considered with 
metapopulation models, researchers are including more sophisti-
cated movement parameters by programming asymmetric mobil-
ity and differential time spent in patches198,199. Feedbacks can also 
be incorporated whereby patch-level infection limits population 
mobility200. Configuration may also be considered as Aedes spe-
cies populations are more likely to diffuse across nearby patches, 
although this requires further development within metapopulation 
frameworks201,202. In particular, we see theoretical models as essen-
tial to advancing our understanding of the relationships between 
patch composition, configuration and connectivity.

Cellular automata and agent-based models (ABMs) are com-
monly used in eco-epidemiological and urban sciences research (to 
model urban expansion scenarios)203,204. Both model classes incor-
porate nonlinearity, stochasticity and adaptive capacities through 
specified rules (that is, transition rules for cellular automata and 
decision rules for ABMs). While many eco-epidemiological mod-
els have memoryless Markov properties in which future states of 
a process depend only on the present state, cellular automata and 
ABMs incorporate at least short-term adaptive memory. ABMs can 
uniquely incorporate individual-level behaviours rooted in beliefs, 
desires and intentions. They can include feedbacks between agents 
with specific socio-behavioural profiles and higher-order social 
structures, which can in turn be used to guide interventions and 
decision-making (Box 1)205.

A challenge with ABMs is acquiring sufficient data to parameter-
ize the model, create decision rules and understand local transmis-
sion dynamics well enough to make evidence-based assumptions. 
In contrast, machine learning methods do not require local-level 
assumptions and are entirely data driven206. Machine learning 
facilitates the inclusion of large numbers of correlated variables and 
modelling complex interactions between these variables207. They 
fit models without presupposing functional forms (for example, 
linear), providing more flexibility than hypothesis-driven models. 
They are increasingly used in landscape ecology and urban plan-
ning and are capable of learning and predicting different urban 
growth patterns208,209. However, a more complete representation of 
current urban conditions and future scenarios requires engaging 
with social actors of the system.

Participatory and transdisciplinary research. Increasingly, 
researchers are using participatory methods to understand how 
human actors experience and influence their landscape, networks 
and risk. Approaches require diverse contributors, with research 
and non-research experts (for example, policy practitioners, 
community leaders and so on) contributing as equal team mem-
bers121,210–212. Together, there are opportunities to create innovative 
datasets, develop decision support tools and identify viable action-
able solutions213,214. Yet, these outputs require negotiating the scope, 
intent and ethics of participation, particularly when using emerging 
technologies and engaging marginalized communities214–216.

Public health is increasingly relying on community informat-
ics, where data are gathered from the public via digital platforms. 
Users can report vector encounters or cases through mobile apps or 
websites in real time and engage with other participants217–220. These 
approaches have data limitations but allow for collections across 
broader geographic areas than is possible with small research teams. 
They also benefit from informing and empowering community 
members221. Additional urban science methods, including partici-
patory drone mapping, virtual reality interviews and scenario map-
ping, can all inform Aedes-borne disease work222–224. Researchers 
can compare community-created maps with entomological risk 
maps to contrast academic definitions of risk versus risk experi-
enced by community members225. Evans et al.57 used participatory 
mapping, entomological data and Bayesian models to investigate 
relationships between entomological risk and community reported 
risk. While field data and spatial models showed similar mosquito 
abundance across sites, socio-economically mediated human–envi-
ronmental interactions led to differences in mosquito avoidance 
behaviours and risk perception. This mixed qualitative–quantita-
tive example is a starting point for future participatory simulation 
modelling. ABMs in particular allow researchers and participants to 
co-develop model environments, incorporate agent rules and inter-
pret results. Participatory modelling is essential for Aedes-borne 
disease interventions, particularly given scale mismatches between 
administrative decision-making and disease risk. Emerging evi-
dence points to the disconnect between the bottom-up, interactive 
nature of urban processes and the top-down role of governance, as 
services are allocated in management units created for operational 
or cost-saving purposes80. Engaging communities in Aedes-borne 
disease interventions channels local knowledge on current condi-
tions towards best practices, particularly at finer scales, which are 
overlooked by city-wide management plans.

Ameliorating scale mismatches requires engagement and clear 
communication between stakeholders of different backgrounds. 
Working alongside local communities facilitates this, leading to 
innovative approaches that involve cross-scale collaboration to 
solve a problem. Health ministries are increasingly endorsing 
multi-stakeholder, transdisciplinary and inter-sectoral collabora-
tions to reduce Aedes-borne disease risk. However, there is little 
guidance on doing so226–228. At the very least, these approaches 
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require a shared language and objectives, and aligned vision among 
collaborators. With this framework, we establish that there are 
not only common goals but clear theoretical and methodological 
cross-overs between Aedes-borne disease eco-epidemiology and 
the urban sciences that must be matured and made accessible to 
researchers and practitioners at all levels.

Conclusion
In this Perspective, we bridge concepts from the urban sciences 
with hierarchical patch systems theories foundational to ecol-
ogy. With an urban systems framework, we facilitate new ways 
of studying Aedes-borne diseases within complex cities. We draw 
from ever-growing knowledge on the science of cities, synthesizing 
CAS, hierarchical patch systems and relational geography to con-
sider how individual and collective social structures interact with 
the biophysical landscape to generate arboviral disease risk. With 
insight into the scales at which socio-ecological-technical processes 
constrain eco-epidemiological ones, cities have an opportunity to 
work with communities to co-create vector control management 
units that consider local context. The framework’s broad nature and 
roots in ecological tenets allow existing eco-epidemiological meth-
ods to be integrated with greater interpretability and reproducibility 
for diverse cities worldwide, as well as for other emerging infectious 
diseases. Application of the framework is enhanced through trans-
disciplinary, inter-sectoral teams including government officials, 
social scientists and community members. Ultimately, the frame-
work will improve existing conceptual and quantitative approaches 
and advance strategic interventions ranging from urban planning 
(for example, piped water services) to emerging vector control 
strategies (for example, Wolbachia-infected mosquitoes) for com-
plex urban systems around the world. An urban systems research 
agenda requires building on this foundation, advancing innovative 
methods and developing pipelines to move evidence into action.
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